Skip to main content

A Proposal of Hybrid Fuzzy Clustering Algorithm with Application in Condition Monitoring of Industrial Processes

  • Chapter
  • First Online:
Uncertainty Management with Fuzzy and Rough Sets

Abstract

In this chapter a hybrid algorithm using fuzzy clustering techniques is presented. The algorithm is applied in a condition monitoring scheme with online detection of novel faults and automatic learning. The proposal, initially identifies the outliers based on data density. Later, the outliers are removed and the clustering process is performed. To extract the important features and improve the clustering, the maximum-entropy-regularized weighted fuzzy c-means is used. Then, the use of kernel functions is performed for clustering the data, where there is a non-linear relationship between the variables. Thus, the classification accuracy can be improved because better class separability is achieved. Next, the regulation factor of the resulting partition fuzziness (parameter m) and the Gaussian Kernel bandwidth (parameter \(\sigma \)) are optimized. The feasibility of the proposal is demonstrated by using the DAMADICS benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gosain, A., Dahika, S.: Performance analysis of various fuzzy clustering algorithms: a review. In: 7th International Conference on Communication. Comput. Virtualiz. 79, 100–111 (2016)

    Article  Google Scholar 

  2. Chi Man Vonga, K. I. W., Kin Wong, P.: Simultaneous-fault detection based on qualitative symptom descriptions for automotive engine diagnosis. Appl. Soft Comput. 22, 238–248 (2014)

    Google Scholar 

  3. Jiang, X.L., Wang, Q., He, B., Chen, S.J., Li, B.L.: Robust level set image segmentation algorithm using local correntropy-based fuzzy c-means clustering with spatial constraints. Neurocomputing 207, 22–35 (2016)

    Article  Google Scholar 

  4. Thong, P.H., Son, L.H.: Picture fuzzy clustering: a new computational intelligence method. Soft Comput. 20, 3549–3562 (2016)

    Article  Google Scholar 

  5. Kesemen, O., Tezel, O., Ozkul, E.: Fuzzy c-means clustering algorithm for directional data (\(fcm4dd\)). Expert Syst. Appl. 58, 76–82 (2016)

    Article  Google Scholar 

  6. Zhang, L., Lu, W., Liu, X., Pedrycz, W., Zhong, C.: Fuzzy c-means clustering of incomplete data based on probabilistic information granules of missing values. Knowl. Based Syst. 99, 51–70 (2016)

    Article  Google Scholar 

  7. Leski, J.M.: Fuzzy C-ordered-means clustering: Fuzzy Sets Syst. 286, 114–133 (2016)

    Article  MathSciNet  Google Scholar 

  8. Saltos, R., Weber, R.: A rough-fuzzy approach for support vector clustering. Inf. Sci. 339, 353–368 (2016)

    Article  Google Scholar 

  9. Aghajari, E., Chandrashekhar, G.D.: Self-Organizing Map based Extended Fuzzy C-Means (SEEFC) algorithm for image segmentation. Appl. Soft Comput. 54, 347–363 (2017)

    Article  Google Scholar 

  10. Kaur, P., Soni, A., Gosain, A.: Robust kernelized approach to clustering by incorporating new distance measure. Eng. Appl. Artif. Intell. 26, 833–847 (2013)

    Article  Google Scholar 

  11. Askari, S., Montazerin, N., Zarandi, M.H.: Generalized possibilistic fuzzy C-Means with novel cluster validity indices for clustering noisy data. Appl. Soft Comput. 53, 262–283 (2017)

    Article  Google Scholar 

  12. Chatzis, S.P.: A fuzzy c-means-type algorithm for clustering of data with mixed numeric and categorical attributes employing a probabilistic dissimilarity functional. Expert Syst. Appl. 38, 8684–8689 (2011)

    Article  Google Scholar 

  13. Kaur, P.: A density oriented fuzzy c-means clustering algorithm for recognising original cluster shapes from noisy data. Int. J. Innov. Comput. Appl. 3, 77–87 (2011)

    Article  Google Scholar 

  14. Ding, Y., Fu, X.: Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm. Neurocomputing 188, 233–238 (2016)

    Article  Google Scholar 

  15. Akbulut, Y., Sengur, A., Guo, Y., Polat, K.: KNCM: kernel neutrosophic C-Means clustering. Appl. Soft Comput. 52, 714–724 (2017)

    Article  Google Scholar 

  16. Modha, D.S., Spangler, W.S.: Feature weighting in k-means clustering. Mach. Learn. 52, 217–237 (2003)

    Article  Google Scholar 

  17. Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional data: a review. SIGKDD Explor. 6, 90–105 (2004)

    Article  Google Scholar 

  18. Wang, X.Z., Wang, Y.D., Wang, L.J.: Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognit. Lett. 25, 1123–1132 (2004)

    Article  Google Scholar 

  19. Borgelt, C.: Feature weighting and feature selection in fuzzy clustering. Proc. IEEE Conf. Fuzzy Syst. 1, 838–844 (2008)

    Google Scholar 

  20. Deng, Z., Choi, K.S., Chung, F.L., Wang, S.: Enhanced soft subspace clustering integrating within-cluster and between-cluster information. Pattern Recognit. 43, 767–781 (2010)

    Article  Google Scholar 

  21. Ng, T.F., Pham, T.D., Jia, X.: Feature interaction in subspace clustering using the Choquet integral. Pattern Recognit. 45, 2645–2660 (2012)

    Article  Google Scholar 

  22. Tang, C.L., Wang, S.G., Xu, W.: New fuzzy c-means clustering model based on the data weighted approach. Data Knowl. Eng. 69, 881–900 (2010)

    Article  Google Scholar 

  23. Zhou, J., Chen, L., Philip Chen, C.L., Zhang, Y., Li, H.L.: Fuzzy clustering with the entropy of attribute weights. Neurocomputing 198, 125–134 (2016)

    Article  Google Scholar 

  24. Silva Filho, T.M., Pimentel, B.A., Souza, R.M., Oliveira, A.L.I.: Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization. Expert Syst. Appl. 42, 6315–6328 (2015)

    Article  Google Scholar 

  25. Bernal de Lázaro, J.M., Llanes-Santiago, O., Prieto Moreno, A., Knupp, D.C., Silva-Neto, A.J.: Enhanced dynamic approach to improve the detection of small-magnitude faults. Chemi. Eng. Sci. 146, 166–179 (2016)

    Google Scholar 

  26. Roubens, M.: Pattern classification problems and fuzzy sets. Fuzzy Sets Syst. 1, 239–253 (1978)

    Article  MathSciNet  Google Scholar 

  27. Hathaway, R.J., Davenport, J.W., Bezdek, J.C.: Relational duals of the c-means clustering algorithms. Pattern Recognit. 22, 205–212 (1989)

    Article  MathSciNet  Google Scholar 

  28. Hathaway, R.J., Bezdek, J.C.: NERF C-means: non-Euclidean relational fuzzy clustering. Pattern Recognit. 27, 429–437 (1994)

    Article  Google Scholar 

  29. Krishnapuram, R., Joshi A., Nasraoui, O., Yi, L.: Low-complexity fuzzy relational clustering algorithms for web mining. IEEE Trans. Fuzzy Syst. 9, 595–607 (2001)

    Article  Google Scholar 

  30. Dave, R., Sen, S.: Robust fuzzy clustering of relational data. IEEE Trans. Fuzzy Syst. 10, 713–727 (2002)

    Article  Google Scholar 

  31. Krishnapuram, R., Kim, J.: A note on the GustafsonKessel and adaptive fuzzy clustering algorithms. IEEE Trans. Fuzzy Syst. 7, 453–461 (1999)

    Article  Google Scholar 

  32. Li, C., Biswas G., Dale M., Dale P., Matryoshka.: A HMM based temporal data clustering methodology for modeling system dynamics. Intell. Data Anal. 6, 281–308 (2002)

    Google Scholar 

  33. Kasabov, N.K., Song, Q.: DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 10, 144–154 (2002)

    Article  Google Scholar 

  34. Aguilar, J., Lopez De Mantaras R.: The process of classification and learning the meaning of linguistic descriptors of concepts. Approx. Reason. Decis. Anal. 165–175 (1982)

    Google Scholar 

  35. Asuncion, A., Newman, D.: UCI machine learning repository, University of California, School of Information and Computer Science, Irvine, CA. [Online] Accessed http://archive.ics.uci.edu/beta

  36. García, S., Herrera, F.: An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J. Mach. Learn. Res. 9, 2677–2694 (2008)

    MATH  Google Scholar 

  37. García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour: a case study on the cec 2005 special session on real parameter optimization. J. Heur. 15, 617–644 (2009)

    Article  Google Scholar 

  38. Luengo, J., García, S., Herrera, F.: A study on the use of statistical tests for experimentation with neural networks: analysis of parametric test conditions and non-parametric tests. Expert Syste. Appl. 36, 7798–7808 (2009)

    Article  Google Scholar 

  39. Li, C., Zhou, J., Kou, P., Xiao, J.: A novel chaotic particle swarm optimization based fuzzy clustering algorithm. Neurocomputing 83, 98–109 (2012)

    Article  Google Scholar 

  40. Pakhira, M., Bandyopadhyay, S., Maulik, S.: Validity index for crisp and fuzzy clusters. Pattern Recognit. 37, 487–501 (2004)

    Article  Google Scholar 

  41. Wu, K., Yang, M.: A cluster validity index for fuzzy clustering. Pattern Recognit. 26, 1275–1291 (2005)

    Article  Google Scholar 

  42. Camps Echevarría, L., Llanes-Santiago, O., Silva Neto, A.J.: An approach for fault diagnosis based on bio-inspired strategies. Stud. Comput. Intell. 284, 53–63 (2010)

    MATH  Google Scholar 

  43. Liu, Q., Lv, W.: The study of fault diagnosis based on particle swarm optimization algorithm. Comput. Inf. Sci. 2, 87–91 (2009)

    Google Scholar 

  44. Lobato, F., Steffen Jr., F., Silva Neto, A. J.: Solution of inverse radiative transfer problems in two-layer participating media with Differential Evolution. Inverse Probl. Sci. Eng. 18, 183–195 (2009)

    Article  MathSciNet  Google Scholar 

  45. : Bartys, M., Patton, R., Syfert, M., de las Heras, S., Quevedo. J.: Introduction to the damadics actuator FDI benchmark study. Control Eng. Pract. 14, 577–596 (2006)

    Article  Google Scholar 

  46. Kourd, Y., Lefebvre, D., Guersi, N.: FDI with neural network models of faulty behaviours and fault probability evaluation: application to DAMADICS. In: 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SAFEPROCESS), pp. 744–7495 (2012)

    Article  Google Scholar 

  47. Yin, S., Ding, S.X., Haghani, A., Hao, H., Zhang, P.: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. J. Process Control 22, 1567–1581 (2012)

    Article  Google Scholar 

  48. Bolshakova, N., Azuaje, F.: Cluster validation techniques for genome expression data. Signal Process. 83, 825–833 (2003)

    Article  Google Scholar 

  49. Gunter, S. and Bunke, H.: Validation Indices for Graph Clustering. In: Jolion, J., Kropatsch, W., Vento, M. (eds.) Proceedings of the 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, CUEN Ed., pp. 229–238. Italy(2001)

    Google Scholar 

  50. Rodríguez Ramos, A., Llanes-Santiago, O., Bernal de Lázaro, J.M., Cruz Corona, C., Silva Neto, A.J., Verdegay Galdeano, J.L.: A novel fault diagnosis scheme applying fuzzy clustering algorithms. Appl. Soft Comput. 58, 605–619 (2017)

    Article  Google Scholar 

  51. Rodríguez Ramos, A., Silva Neto, A.J., Llanes-Santiago, O.: An approach to fault diagnosis with online detection of novel faults using fuzzy clustering tools. Expert Syst. Appl. 113, 200–212 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by FAPERJ, Fundacão Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro; CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico; CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, research supporting agencies from Brazil; UERJ, Universidade do Estado do Rio de Janeiro and CUJAE, Universidad Tecnológica de La Habana José Antonio Echeverría and the help of Dr. Marcos Quiñones Grueiro (Universidad Tecnológica de La Habana José Antonio Echeverría)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orestes Llanes-Santiago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez-Ramos, A., da Silva Neto, A.J., Llanes-Santiago, O. (2019). A Proposal of Hybrid Fuzzy Clustering Algorithm with Application in Condition Monitoring of Industrial Processes. In: Bello, R., Falcon, R., Verdegay, J. (eds) Uncertainty Management with Fuzzy and Rough Sets. Studies in Fuzziness and Soft Computing, vol 377. Springer, Cham. https://doi.org/10.1007/978-3-030-10463-4_1

Download citation

Publish with us

Policies and ethics