Skip to main content

The Anomalous Potential and Its Determination

  • Chapter
  • First Online:
  • 296 Accesses

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

The knowledge of the normal potential and related ellipsoidal quantities are not enough to properly treat the problem of relating different types of geodetic heights.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note: on historical ground Runge proved a similar theorem for analytic functions; the theorem was extended to harmonic functions by T. Krarup.

References

  • Brockmann J.M., Zehentner N., Höck E., Pail R., Loth I., Mayer-Gürr T., Schuh W.-D. (2014). EGM TIM RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission. Geophysical Research Letters, 41(22):8089–8099.

    Article  Google Scholar 

  • Förste C., Bruinsma S.L., Abrikosov O., Lemoine J.M., Schaller T., Götze H.J., Ebbing J., Marty J.C., Flechtner F., Balmino G., Biancale R. (2014). EIGEN-6C4: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. In: 5th GOCE User Workshop, Paris. 25–28 November 2014. http://icgem.gfz-potsdam.de/ICGEM/documents/Foerste-et-al-EIGEN-6C4.pdf.

  • Heck B. (1991). On the linearized Boundary Value Problem of physical geodesy. Report No. 407, Department of Geodetic Science and Survey, The Ohio State University, Columbus.

    Google Scholar 

  • Heiskanen W.A. and Moritz H. (1967). Physical geodesy. Freeman, San Francisco.

    Article  Google Scholar 

  • Kaula W.M. (1966). Tests and combination of satellite determinations of the gravity eld with gravimetry. Journal of Geophysical Research, 71:5303–5314.

    Article  Google Scholar 

  • Kaula W.M. (2000). Theory of satellite geodesy. Dover, New York.

    Google Scholar 

  • Krarup T. (2006). Letters on Molodenskiy’s problem, III. In: Borre K. (Ed.) Mathematical Foundation of Geodesy. Springer Verlag, Berlin, Heidelberg.

    Google Scholar 

  • MacMillan W.D. (1958). The theory of the potential. In: Theoretical mechanics, Vol 2. Dover Publications, New York.

    Google Scholar 

  • Marussi A. (1985). Intrinsic geodesy. Springer, Berlin.

    Chapter  Google Scholar 

  • Molodensky M.S., Eremeev V.F., Jurkina M.I. (1962). Methods for study of the external gravitational field and figure of the Earth. Translated from Russian, Israel Program for Scientific Translations, Jerusalem.

    Google Scholar 

  • Moritz H. (1980). Advanced physical geodesy, 2nd edn. Wichmann, Karlsruhe.

    Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4):B04406.

    Article  Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K. (2013). Correction to “The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)”. Journal of Geophysical Research: Solid Earth, 118(5):2633.

    Google Scholar 

  • Rapp, R.H. (1993). Use of altimeter data in estimating global gravity models. In: Sansò F., Rummel R. (Eds.), Satellite Altimetry in Geodesy and Oceanography, Lecture Notes in Earth Sciences, 50. Springer-Verlag, Berlin, Heidelberg, pp. 374–417.

    Google Scholar 

  • Sansò F., Sideris M.G. (2013). Geoid determination: Theory and methods. Lecture Notes in Earth System Sciences, Vol. 110. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Sansò F., Venuti G. (2010). The convergence problem of collocation solutions in the framework of the stochastic interpretation. Journal of Geodesy, 85(1):51–63.

    Article  Google Scholar 

  • Shako R., Förste C., Abrykosov O., Bruinsma S., Marty J.-C., Lemoine J.-M., Flechtner F., Neumayer K.-H., Dahle C. (2014). EIGEN-6C: A High-Resolution Global Gravity Combination Model Including GOCE Data. In: Flechtner F., Sneeuw N., Schuh W.-D. (Eds.), Observation of the System Earth from Space - CHAMP, GRACE, GOCE and future missions, Advanced Technologies in Earth Sciences. Springer, Berlin, Heidelberg, pp. 155–161.

    Google Scholar 

  • Stokes G.G. (1849). On the variation of gravity on the surface of the Earth. Transactions of the Cambridge Philosophical Society, 8:672–695.

    Google Scholar 

  • Tscherning C.C. and Rapp R.H. (1974). Closed covariance expressions for gravity anomalies, geoid undulations, and deections of the vertical implied by anomaly degree variances. Report No. 208, Department of Geodetic Science and Surveying, The Ohio State University, Columbus.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Sansò .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sansò, F., Reguzzoni, M., Barzaghi, R. (2019). The Anomalous Potential and Its Determination. In: Geodetic Heights. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-10454-2_4

Download citation

Publish with us

Policies and ethics