Skip to main content

Abstract

Fuel cells are electromechanical-electrochemical systems that produce electricity and water from hydrogen and oxygen via the process reverse to water electrolysis. Hydrogen is obtained from hydrogen-rich fuels (natural gas, methanol, ethanol, etc.) using simple chemical-physical processes. Fuel cells produce electricity without burning natural gas (or any other source of hydrogen), so that fuel cells are considered as clean (green) electric energy generators since they do not pollute the environment. A fuel cell is a triode composed of an anode, membrane, and cathode. Hydrogen is pumped from the anode side, and oxygen is pumped from the cathode side. Depending on the type of the membrane, we have several types of fuel cells: proton exchange membrane (polymer electrolyte membrane) (PEM) fuel cells, solid oxide fuel cells, etc. Since the PEM fuel cells are the most developed, best understood, and with numerous applications in the today’s world, we will concentrate our attention to this kind of fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Manufacturer’s website: www.greenlightinnovation.com

References

  • Abdin Z, Webb C, Mac E, Gray A (2017) PEM fuel cell model and simulation in MATLAB-Simulink based on physical parameters. Energy 116:1131–1144

    Article  Google Scholar 

  • Arsov G (2007) Parametric PSPICE model of a PEM fuel cell. Electronics 11:99–103

    Google Scholar 

  • Barbir F (2005) PEM fuel cells: theory and practice. Elsevier, Amsterdam

    Google Scholar 

  • Barelli L, Bidini G, Gallorini F, Ottaviano A (2012) Dynamic analysis of PEMFC-based CHP systems for domestic application. Appl Energy 91:13–28

    Article  Google Scholar 

  • Barzegari M, Dardel M, Alizadeh E, Ramiar A (2016) Reduced-order model of cascade type PEM fuel cell stack with integrated humidifiers and water separators. Energy 113:683–692

    Article  Google Scholar 

  • Bavarian M, Soroush M, Kevredkidis I, Benziger J (2010) Mathematical modeling, steady state and dynamic behavior, and control of fuel cells: a review. Ind Eng Chem Res 49:7922–7950

    Article  Google Scholar 

  • Becherif M, Hissel D, Gaagat S, Wack M (2011) Electrical equivalent model of a proton exchange membrane fuel cell with experimental validation. Renew Energy 36:2582–2588

    Article  Google Scholar 

  • Benziger J, Satterfield M, Hogarth W, Nehlsen J, Kevrekidis I (2006) The power performance curve for engineering analysis of fuel cells. J Power Sources 155:272–285

    Article  Google Scholar 

  • Bhargav A, Lyubovsky M, Dixit M (2014) Managing fuel variabality in LPG-based PEM fuel cell systems: — I: theormodinamic simulations. Int J Hydrogen Energy 39:17231–17239

    Article  Google Scholar 

  • Chakraborty U (2018) Reversible and irreversible potentials and an inaccuracy in popular models in the fuel cell literature. Energies 11:1851. https://doi.org/10.3390/en11071851

    Article  Google Scholar 

  • Chen T (2012) Linear system theory and design. Oxford University Press, Oxford, UK

    Google Scholar 

  • Chen P-C (2013) Robust voltage tracking control for proton exchange membrane fuel cells. Energ Conver Manage 65:408–419

    Article  Google Scholar 

  • Chiu L, Diong B, Gemmen R (2004) An improved small signal model of the dynamic behavior of PEM fuel cells. IEEE Trans Ind Appl 40:970–977

    Article  Google Scholar 

  • Daud W, Rosli R, Majlan E, Hamid S, Mohamed R, Husaini T (2017) PEM fuel cell system control: a review. Renew Energy 113:620–638

    Article  Google Scholar 

  • Eikerling M, Kulikovsky A (2014) Polymer electrolyte fuel cells: physical principles of materials and operation. CRC Press, Boca Raton

    Book  Google Scholar 

  • El-Sharkh M, Rahman A, Alam M, Byrne P, Sakla A, Thomas T (2004) A dynamic model for stand-alone PEM fuel cell power plant for residential applications. J Power Sources 138:199–204

    Article  Google Scholar 

  • El-Sharkh M, Sisworahardjo N, Uzunoglu M, Onar O, Alam M (2007) Dynamic behavior of PEM fuel cell and microturbine power plants. J Power Sources 164:315–321

    Article  Google Scholar 

  • Famouri P, Gemmen R (2003) Electromechanical circuit model of a PEM fuel cell. In: Proceedings of Power Engineering Society regular meeting, pp 1436–1440

    Google Scholar 

  • Fuhrmann J, Haasdonk B, Holzbecher E, Ohlberger M (2008) Modeling and simulation of PEM fuel cells. ASME J Fuel Cell Sci Technol 5:020301-1

    Google Scholar 

  • Gajic Z, Lim M-T, Skataric D, Su W-C, Kecman V (2009) Optimal control: weakly coupled systems and applications. CRC Press Taylor & Francis Group, Boca Raton

    MATH  Google Scholar 

  • Gemmen R (2003) Analysis for the effect of inverter ripple current on fuel cell operating condition. J Fluid Eng 124:576–585

    Article  Google Scholar 

  • Gou B, Na W, Diong B (2010) Fuel cells: modeling, control, and applications. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Grujicic M, Chttajallu K, Law E, Pukrushpan J (2004a) Model-based control strategies in the dynamic interaction of air supply and fuel cell. Proc Inst Mech Eng A J Power Energy 218:487–499

    Article  Google Scholar 

  • Grujicic M, Chttajallu KM, Pukrushpan JT (2004b) Control of the transient behavior of polimer electrolyte membrane fuel cell systems. Proc Inst Mech Eng D J Automot Eng 218:1239–1250

    Article  Google Scholar 

  • Haddad A, Mannah M, Bazzi H (2015) Nonlinear time-variant model of the PEM type fuel cell for automotive applications. Simul Model Pract Theory 51:31–44

    Article  Google Scholar 

  • Hajizadeh A, Golkar M (2010) Intelligent robust control of hybrid distributed generation system under voltage sag. Expert Syst Appl 37:7627–7638

    Article  Google Scholar 

  • Hayati M, Khayatian A, Dehghani M (2016) Simultaneous optimization of net power and enhancement of PEM fuel cell lifespan using extremum seeking and sliding mode control techniques. IEEE Trans Energy Convers 32:688–696

    Article  Google Scholar 

  • Headley A, Yu V, Borduin R, Chen D, Li W (2016) Development and experimental validation of a physics-based PEM fuel cell model for cathode humidity control design. IEEE/ASME Trans Mechatron 21:1778–1782

    Article  Google Scholar 

  • Hong L, Chen J, Liu Z, Huang L, Wu Z (2017) A nonlinear control strategy for fuel cell delivery in PEM fuel cells considering nitrogen permeation. Int J Hydrogen Energy 42:1565–1576

    Article  Google Scholar 

  • Kalman R (1960) Contributions to the theory of optimal control. Bol Soc Mat Mexicana 5:102–119

    MathSciNet  Google Scholar 

  • Kalman R (1963) Mathematical description of linear dynamical systems. SIAM J Control 1:152–192

    MathSciNet  MATH  Google Scholar 

  • Khalil H (2002) Nonlinear systems. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Kulikovsky A (2010) Analytical modeling of fuel cells. Elsevier, Amsterdam

    Google Scholar 

  • Kunusch C, Mayosky M, Husar A (2011) Control-oriented modeling and experimental validation of a PEMFC generation system. IEEE Trans Energy Convers 26:851–861

    Article  Google Scholar 

  • Larminie J, Dicks A (2001) Fuel cell systems explained. Wiley, New York

    Google Scholar 

  • Li Y, Rajakaruna S (2005) An analysis of the control and operation of a solid oxide fuel-cell power plant in an isolated system. IEEE Trans Energy Convers 20:381–387

    Article  Google Scholar 

  • Li D, Li C, Gao Z, Jin Q (2015a) On active disturbance rejection of the proton exchange membrane fuel cells. J Power Sources 283:452–463

    Article  Google Scholar 

  • Li Y, Zhao X, Tao S, Li Q, Chen W (2015b) Experimental study on anode and cathode pressure difference control and effects in a proton exchange membrane fuel cell system. Energ Technol 3:946–954

    Article  Google Scholar 

  • Majlan E, Rohendi D, Daud W, Husaini T, Haque M (2018) Electrode for proton exchange membrane fuel cells: a review. Renew Sustain Energy Rev 89:117–134

    Article  Google Scholar 

  • Matraji I, Laghtouche S, Jemei S, Wack M (2013) Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding model. Appl Energy 104:945–957

    Article  Google Scholar 

  • McCain B, Stefanopoulou A, Siegel J (2010) Controllability and observability analysis of the liquid water distribution inside the gas diffusion layer of a unit fuel cell model. Trans ASME J Dyn Syst Meas Control 132:061303-1–051303-8

    Article  Google Scholar 

  • Milanovic M, Radisavljevic-Gajic V (2018) Optimal linear-quadratic integral feedback controller design with disturbance rejection for a proton exchange membrane fuel cell. In: ASME dynamic systems and control conference, Atlanta

    Google Scholar 

  • Milanovic M, Rose P, Radisavljevic-Gajic V, Clayton G (2017) Five state analytical model proton exchange membrane fuel cell. In: ASME dynamic systems and control conference, Tysons Corner

    Google Scholar 

  • Min K, Kang S, Mueller F, Auckland J, Brouwer J (2009) Dynamic simulation of a stationary proton exchange membrane fuel cell system. ASME J Fuel Cell Sci Technol 6:041015-1

    Article  Google Scholar 

  • Na K, Gou B (2008) Feedback linearization based nonlinear control for PEM fuel cells. IEEE Trans Energy Convers 23:179–190

    Article  Google Scholar 

  • Na K, Gou B, Diong B (2007) Nonlinear control of PEM fuel cells by exact linearization. IEEE Trans Ind Appl 43:1426–1433

    Article  Google Scholar 

  • Nehrir M, Wang C (2009) Modeling and control of fuel cells: distributed generation applications. Wiley, Hoboken

    Book  Google Scholar 

  • Nguyen T, White R (1993) A water and heat management model for proton exchange membrane fuel cells. J Electrochem Soc 140:2178–2186

    Article  Google Scholar 

  • Onar O, Shirazi O, Khaligh A (2010) Grid interaction operation of a telecommunications power system with a novel topology for multiple-input buck-boost converter. IEEE Trans Power Delivery 25:2633–2645

    Article  Google Scholar 

  • Padulles J, Ault G, McDonald J (2000) An integrated SOFC plant dynamic model for power systems simulation. J Power Sources 86:495–500

    Article  Google Scholar 

  • Page S, Anbuky A, Krumdieck S, Brouwer J (2007) Test method and equivalent circuit modeling of a PEM fuel cell in a passive state. IEEE Trans Energy Convers 22:764–773

    Article  Google Scholar 

  • Pandiyan S, Elayaperumal A, Rajalakshmi N, Dhathathreyan K, Venkateshwaran N (2013) Design and analysis of a proton exchange membrane fuel cells (PEMFC). Renew Energy 49:161–655

    Article  Google Scholar 

  • Park G, Gajic Z (2012) Sliding mode control of a linearized polymer electrolyte membrane fuel cell. J Power Sources 212:226–232

    Article  Google Scholar 

  • Park G, Gajic Z (2014) A simple sliding mode controller of a fifth-order nonlinear PEM fuel cell model. IEEE Trans Energy Convers 29:65–71

    Article  Google Scholar 

  • Pukrushpan J, Stefanopoulou A, Peng H (2004a) Control of fuel cell power systems: principles, modeling and analysis and feedback design. Springer, London

    Book  Google Scholar 

  • Pukrushpan J, Peng H, Stefanopoulou A (2004b) Control oriented modeling and analysis for automotive fuel cell systems. Trans ASME J Dyn Syst Meas Control 126:14–25

    Article  Google Scholar 

  • Radisavljevic V (2011) On controllability and system constraints of a linear models of proton exchange membrane and solid oxide fuel cells. J Power Sources 196:8549–8552

    Article  Google Scholar 

  • Radisavljevic-Gajic V, Graham K (2017) System analysis of a nonlinear proton exchange membrane fuel cell mathematical model. In: ASME dynamic systems and control conference, Tysons Corner

    Google Scholar 

  • Radisavljevic-Gajic V, Rose P (2014) A new two stage design of feedback controllers for a hydrogen gas reformer. Int J Hydrogen Energy 39:11738–11748

    Article  Google Scholar 

  • Radu R, Taccani R (2006) SIMULINK-FEMLAB Integrated dynamic simulation model for a PEM fuel cell system. ASME J Fuel Cell Sci Technol 6:041015-1

    Google Scholar 

  • Rojas A, Lopez G, Gomez-Aguilar J, Alvarado V, Torres C (2017) Control of the air supply system in a PEMFC with balance of plant simulation. Sustainability 9:1–23

    Google Scholar 

  • Serra M, Aguado J, Ansede X, Riera J (2005) Controllability analysis of decentralized linear controllers for polymeric fuel cells. J Power Sources 151:93–102

    Article  Google Scholar 

  • Sinha A (2007) Linear systems: optimal and robust control. Francis & Taylor, Boca Raton

    Book  Google Scholar 

  • Sonntag R, Borgnakke C, Van Wylen G (1998) Fundamentals of thermodynamics. Wiley, New York

    Google Scholar 

  • Tong S, Fang J, Zhang Y (2017) Output tracking control of a hydrogen-air PEM fuel cell. IEEE/CAA J Automat Sinica 4:273–279

    Article  MathSciNet  Google Scholar 

  • Uzunoglu M, Alam M (2006) Dynamic modeling, design, and simulation of a combined PEM fuel cell and ultracapacitor system for stand-alone residential applications. IEEE Trans Energy Convers 21:767–775

    Article  Google Scholar 

  • Uzunoglu M, Alam M (2007) Dynamic modeling, design and simulation of a PEM fuel cell/ultra-capacitor hybrid system for vehicular applications. Energ Conver Manage 48:1544–1553

    Article  Google Scholar 

  • Uzunoglu M, Onar O, El-Sharkh M, Sisworahardjo N, Rahman A, Alam M (2007) Parallel operation characteristics of PEM fuel cell and microturbine power plants. J Power Sources 168:469–476

    Article  Google Scholar 

  • Wang G-L, Wang Y, Shi J-H, Shao H-H (2010) Coordinating IMC-PID and adaptive controllers for a PEMFC. ISA Trans 49:87–94

    Article  Google Scholar 

  • Wang Y, Chen K, Mishler J, Cho S, Adroher X (2011) A review of polymer electrolyte fuel cells: technology, applications and needs on fundamental research. Appl Energy 88:981–1007

    Article  Google Scholar 

  • Wu X, Zhou B (2016) Fault tolerance control for proton exchange membrane fuel cell systems. J Power Sources 324:804–829

    Article  Google Scholar 

  • Yalcinoz T, El-Sharkh M, Sisworahardo N, Alam A (2010) Portable PEM fuel cell-ultra capacitor system: model and experimental verification. Int J Energy Res 34:1249–1256

    Google Scholar 

  • Zhou K, Doyle J (1998) Essential of robust control. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Zhu Y, Tomsovic K (2002) Development of models for analyzing the load-following performance of micro-turbines and fuel cells. Electr Pow Syst Res 62:1–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radisavljević-Gajić, V., Milanović, M., Rose, P. (2019). Modeling and System Analysis of PEM Fuel Cells. In: Multi-Stage and Multi-Time Scale Feedback Control of Linear Systems with Applications to Fuel Cells. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10389-7_7

Download citation

Publish with us

Policies and ethics