Skip to main content
Book cover

REWAS 2019 pp 125–135Cite as

Degradation of Ore Collector with Photooxidation UV/H2O2 and Photo-Fenton

  • Conference paper
  • First Online:
  • 1868 Accesses

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Several types of surfactants have been used in mineral process flotation . Studies appoint an environmental danger potential for some surfactants due to its persistent pollutant characteristic. Oxidation techniques, such as photo-Fenton , are better for surfactants degradation than conventional treatments. The aim of this work is to study the influence of reagent concentrations in the photo-Fenton reaction to degrade a surfactant used on mineral flotation . Experiments were conducted in 3L UV reactor with approximately 260 ppm surfactant solution, 10, 15, 22, 33, and 45 mM H2O2 and 1.4, 1.9, 2.2, 28, 80.13, 83, and 84.4 Fe2+/H2O2 molar rate. From this result, different pH ranges are available showing the 2.5–3 obtained best result. Samples were taken every 20 min in total of 2 h. The degradation was measured through analysis of total organic carbon. Preliminary results indicated that 1.4 molar rate is more efficient showing 70% of degradation when compared to another concentration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36(1):1–84. https://doi.org/10.1080/10643380500326564

    Article  CAS  Google Scholar 

  2. Bach L, Nørregaard RD, Hansen V, Gustavson K (2016) Review on environmental risk assessment of mining chemicals used for mineral separation in the mineral resources industry and recommendations for Greenland. http://dce2.au.dk/pub/SR203.pdf. Accessed 21 Aug 2018

  3. Parsons S (2005) Advanced oxidation processes for water and wastewater treatment. IWA Publishing, Londres

    Google Scholar 

  4. Scott MJ, Jones MN (2000) The biodegradation of surfactants in the environment. Biochim Biophys Acta Biomembr 1508(1–2):235–251. https://doi.org/10.1016/S0304-4157(00)00013-7

    Article  CAS  Google Scholar 

  5. Leja J (1982) Surface chemistry of froth flotation. Plenum Press, New York, pp 205–338

    Book  Google Scholar 

  6. Pupo Nogueira RF, Trovó AG, Da Silva MRA, Villa RD, De Oliveira MC (2007) Fundamentos e aplicaçõ es ambientais dos processos Fenton e foto-Fenton. Quim Nova 30(2):400–408. https://doi.org/10.1590/S0100-40422007000200030

    Article  Google Scholar 

  7. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36(1):1–84. https://doi.org/10.1080/10643380500326564

    Article  CAS  Google Scholar 

  8. Yang M, Hu J, Ito K (1998) Characteristics of Fe2+/h2o2/uv oxidization process. Environ Technol (United Kingdom) 19(2):183–191. https://doi.org/10.1080/09593330.1998.9618629

    Article  CAS  Google Scholar 

  9. Garrido-Ramírez EG, Theng BKG, Mora ML (2010) Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—a review. Appl Clay Sci 47(3–4):182–192. https://doi.org/10.1016/j.clay.2009.11.044

    Article  CAS  Google Scholar 

  10. Clariant S/A (2009) FISPQ—Ficha de Informação de Segurança de Produtos Químicos em acordo com a NBR-14725. Syngenta, Paulinia

    Google Scholar 

  11. Barbeni M, Minero C, Pellzzetti E, Borgarello E, Serpone N (1987) Chemical degradation of chlorophenols with Fenton’s reagent (Fe2++ H2O2), 16. https://ac.els-cdn.com/0045653587902815/1-s2.0-0045653587902815-main.pdf?_tid=8d1ba1ff-784d-470d-8802-db5e167c9e84&acdnat=1533510829_262fe690b57eca28583b816a1bc10ed0. Accessed 5 Aug 2018

  12. Monteagudo JM, Durán A, Culebradas R, San Martín I, Carnicer A (2013) Optimization of pharmaceutical wastewater treatment bysolar/ferrioxalate photo-catalysis. J Environ Manage 128:210–219. https://doi.org/10.1016/j.jenvman.2013.05.013

    Article  CAS  Google Scholar 

  13. Mierzwa JC, Rodrigues R, Teixeira ACSC (2018) UV-hydrogen peroxide processes. In: Advanced oxidation processes for waste water treatment. Elsevier 13–48. https://doi.org/10.1016/b978-0-12-810499-6.00002-4

    Chapter  Google Scholar 

  14. Acosta AML (2016) Processos de tratamento não convencionais para degradação do antibiótico sulfadiazina em meio aquoso

    Google Scholar 

  15. Pignatello JJ (1992) Dark and photo assisted Fe3+ catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ Sci Technol 26(5):944–951. https://pubs.acs.org/sharingguidelines. Accessed 23 Aug 2018

  16. Skoog DA, Holler FJ, Nieman TA (2013) Fundamentos de quimica analítica, vol 53. 8th edn. Thomson. https://doi.org/10.1017/cbo9781107415324.004

  17. Oppenländer T (2003) Photochemical purification of water and air. Wiley-VCH, Villingen-Schwenningen, pp 101–183

    Google Scholar 

  18. Kim S-M, Vogelpohl A (1998) Degradation of organic pollutants by the photo-Fenton-process. Chem Eng Technol 21(2):187–191. https://doi.org/10.1002/(SICI)1521-4125(199802)21:2%3c187:AID-CEAT187%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  19. Giri RR, Ozaki H, Takayanagi Y, Taniguchi S, Takanami R (2011) Efficacy of ultraviolet radiation and hydrogen peroxide oxidation to eliminate large number of pharmaceutical compounds in mixed solution. Int J Environ Sci Tech 8(1):19–30. http://www.bioline.org.br/pdf?st11002. Accessed 22 Aug 2018

    Article  Google Scholar 

  20. Rosenqvist, T (2004) Principles of extractive metallurgy. Tapir Academic Press, pp 238–255

    Google Scholar 

  21. Kim S-M, Vogelpohl A (1998) Degradation of organic pollutants by the photo-Fenton-process. Chem Eng Technol 21(2):187–191. https://doi.org/10.1002/(SICI)1521-4125(199802)21:2%3c187:AID-CEAT187%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabela F. B. Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alves, I.F.B., Baltazar, M.P., Tenório, J.A.S., Romano, D.C. (2019). Degradation of Ore Collector with Photooxidation UV/H2O2 and Photo-Fenton. In: Gaustad, G., et al. REWAS 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10386-6_15

Download citation

Publish with us

Policies and ethics