Skip to main content

Effect of Roadside Features on Injury Severity of Traffic Accidents

  • Chapter
  • First Online:
Laser Scanning Systems in Highway and Safety Assessment

Abstract

Everyone wants safe transportation systems to travel from a place to another easily and securely. However, many issues and challenges make transportation systems less safe than they should be. Among these issues are rapid urbanisation over various landscape forms, population growth and migration of people from rural to urban areas. Other challenges include lack of technical tools that can support road safety managers to efficiently simulate future scenarios and create remarkable plans for solving problems concerning road safety. If these problems continue, then failure of transportation systems will greatly affect the stability and development of modern cities because transportation systems are the heart of the cities. Thus, providing solutions for such problems is among the previous research topics in the fields of transportation and geomatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baatz, M., & Schäpe, A. (2000). Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation (eCognition).

    Google Scholar 

  • Ben-Bassat, T., & Shinar, D. (2011). Effect of shoulder width, guardrail and roadway geometry on driver perception and behavior. Accident Analysis and Prevention, 43(6), 2142–2152.

    Article  Google Scholar 

  • Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.

    MATH  Google Scholar 

  • Esch, T., Thiel, M., Bock, M., Roth, A., & Dech, S. (2008). Improvement of image segmentation accuracy based on multiscale optimization procedure. IEEE Geoscience and Remote Sensing Letters, 5(3), 463–467.

    Article  Google Scholar 

  • Fanos, A. M., & Pradhan, B. (2016). Multi-scenario Rockfall hazard assessment using LiDAR data and GIS. Geotechnical and Geological Engineering, 34(5), 1375–1393. https://doi.org/10.1007/s10706-016-0049-z.

    Article  Google Scholar 

  • Fanos, A. M., & Pradhan, B. (2018). Laser scanning systems and techniques in rockfall source identification and risk assessment: A critical review. Earth Systems and Environment (Article online first available). https://doi.org/10.1007/s41748-018-0046-x.

  • Fanos, A. M., Pradhan, B., Aziz, A. A., Jebur, M. N., & Park, H. -J. (2016). Assessment of multi-scenario rockfall hazard based on mechanical parameters using high-resolution airborne laser scanning data and GIS in a tropical area. Environmental Earth Sciences, 75:1129. http://dx.doi.org/1007/s12665-016-5936-3.

  • Fanos, A. M., Pradhan, B., Mansor, S., Yusoff, Z. M., & Abdullah, A. F. B. (2018). A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data. Landslides (pp. 1–18) (online first available). https://doi.org/10.1007/s10346-018-0990-4.

  • Gong, J., Zhou, H., Gordon, C., & Jalayer, M. (2012, June). Mobile terrestrial laser scanning for highway inventory data collection. In Proceedings of International Conference on Computing in Civil Engineering (pp. 17–20).‏ Clearwater Beach, FL, USA.

    Google Scholar 

  • Idrees, M. O., & Pradhan, B. (2016). A decade of modern cave surveying with terrestrial laser scanning: A review of sensors, method and application development. International Journal of Speleology, 45(1), 71–88. https://doi.org/10.5038/1827-806X.45.1.1923.

    Article  Google Scholar 

  • Idrees, M. O., & Pradhan, B. (2018). Geostructural stability assessment of cave using rock surface discontinuity extracted from terrestrial laser scanning point cloud. Journal of Rock Mechanics and Geotechnical Engineering, 10(3), 534–544. https://doi.org/10.1016/j.jrmge.2017.11.011.

    Article  Google Scholar 

  • Idrees, M. O., Pradhan, B., Buchroithner, M. F., Shafri, H. Z. M., & Bejo, S. K. (2016). Assessing the transferability of a hybrid Taguchi-objective function method to optimize image segmentation for detecting and counting cave roosting birds using terrestrial laser scanning data. Journal of Applied Remote Sensing, 10(3), 035023. https://doi.org/10.1117/1.JRS.10.035023.

    Article  Google Scholar 

  • Jalayer, M., Gong, J., Zhou, H., & Grinter, M. (2015). Evaluation of remote sensing technologies for collecting roadside feature data to support highway safety manual implementation. Journal of Transportation Safety & Security, 7(4), 345–357.

    Article  Google Scholar 

  • McCarthy, T., Fotheringham, S., Charlton, M., Winstanley, A. C., & O’Malley, V. (2007). Integration of LIDAR and stereoscopic imagery for route corridor surveying. Mobile Mapping Technology, 37, 1125–1130.

    Google Scholar 

  • Mezaal, M. R., & Pradhan, B. (2017). Data mining-aided automatic landslide detection using airborne laser scanning data in densely forested tropical areas. Korean Journal of Remote Sensing, 34(1), 45–74. https://doi.org/10.7780/kjrs.2018.34.1.4.

    Article  Google Scholar 

  • Mezaal, M. R., & Pradhan, B. (2018). An improved algorithm for identifying shallow and deep-seated landslides in dense tropical forest from airborne laser scanning data. CATENA, 167, 147–159. https://doi.org/10.1016/j.catena.2018.04.038.

    Article  Google Scholar 

  • Mezaal, M. R., Pradhan, B., Sameen, M. I., Shafri, H. Z. M., & Yusoff, Z. M. (2017a). Optimized neural architecture for automatic landslide detection from high-resolution airborne laser scanning data. Applied Sciences, 7(7), 730.

    Article  Google Scholar 

  • Mezaal, M. R., Pradhan, B., Shafri, H. Z. M., & Yusoff, Z. M. (2017b). Automatic landslide detection using Dempster-Shafer theory from LiDAR-derived data and orthophotos. Geomatics, Natural Hazards and Risk, 8(2), 1935–1954. https://doi.org/10.1080/19475705.2017.1401013.

    Article  Google Scholar 

  • Mezaal, M. R., Pradhan, B., & Rizeei, H. M. (2018). Improving landslide detection from airborne laser scanning data using optimized Dempster-Shafer. Remote Sensing, 10(7), 1029. https://doi.org/10.3390/rs10071029.

    Article  Google Scholar 

  • Müllerová, J., Pergl, J., & Pyšek, P. (2013). Remote sensing as a tool for monitoring plant invasions: Testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed). International Journal of Applied Earth Observation and Geoinformation, 25, 55–65.

    Article  Google Scholar 

  • Ozdemir, A. (2016). Sinkhole susceptibility mapping using logistic regression in Karapınar (Konya, Turkey). Bulletin of Engineering Geology and the Environment, 75(2), 681–707. https://doi.org/10.1007/s10064-015-0778-x.

    Article  Google Scholar 

  • Pradhan, B., Jebur, M. N., Shafri, H. Z. M., & Tehrany, M. S. (2015). Data fusion technique using wavelet transform and Taguchi methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery. IEEE Transactions on Geoscience and Remote Sensing.

    Google Scholar 

  • Rifaat, S. M., Tay, R., & de Barros, A. (2011). Effect of street pattern on the severity of crashes involving vulnerable road users. Accident Analysis and Prevention, 43(1), 276–283.

    Article  Google Scholar 

  • Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104.

    Article  Google Scholar 

  • Samui, P. (2008). Slope stability analysis: A support vector machine approach. Environmental Geology, 56, 255–267.

    Article  Google Scholar 

  • Savolainen, P. T., Mannering, F. L., Lord, D., & Quddus, M. A. (2011). The statistical analysis of highway crash-injury severities: A review and assessment of methodological alternatives. Accident Analysis and Prevention, 43(5), 1666–1676.

    Article  Google Scholar 

  • Theofilatos, A., Graham, D., & Yannis, G. (2012). Factors affecting accident severity inside and outside urban areas in Greece. Traffic Injury Prevention, 13(5), 458–467.

    Article  Google Scholar 

  • Venkataraman, N., Ulfarsson, G. F., & Shankar, V. N. (2013). Random parameter models of interstate crash frequencies by severity, number of vehicles involved, collision and location type. Accident Analysis and Prevention, 59, 309–318.

    Article  Google Scholar 

  • Wang, Y. G., Chen, K. M., Ci, Y. S., & Hu, L. W. (2011). Safety performance audit for roadside and median barriers using freeway crash records: Case study in Jiangxi, China. Scientia Iranica, 18(6), 1222–1230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradhan, B., Ibrahim Sameen, M. (2020). Effect of Roadside Features on Injury Severity of Traffic Accidents. In: Laser Scanning Systems in Highway and Safety Assessment. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-10374-3_6

Download citation

Publish with us

Policies and ethics