Skip to main content

An Integrated Machine Learning Approach for Automatic Highway Extraction from Airborne LiDAR Data and Orthophotos

  • Chapter
  • First Online:
Laser Scanning Systems in Highway and Safety Assessment

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

  • 770 Accesses

Abstract

Automatic extraction of highways from airborne LiDAR (light detection and ranging) has been a long-standing active research topic in remote sensing (Idrees and Pradhan 2016, 2018; Idrees et al 2016; Fanos et al. 2016, 2018; Fanos and Pradhan 3; Abdulwahid and Pradhan 2017; Pradhan et al. 2016; Sameen et al. 2017; Sameen and Pradhan 2017a, b). Accurate and computationally useful extraction of highway information from remote sensing data is significant for various applications such as traffic accident modeling (Bentaleb et al. 2014), navigation (Kim et al. 2006), intelligent transportation systems (Vaa et al. 2007), and natural hazard assessments (Jebur et al. 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulwahid, W. M., & Pradhan, B. (2017). Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides, 14(3), 1057–1076.

    Google Scholar 

  • Alharthy, A., & Bethel, J. (2003). Automated road extraction from LIDAR data. In Proceedings of the ASPRS Annual Conference, 2003 (pp. 05–09).

    Google Scholar 

  • Amo, M., Martínez, F., & Torre, M. (2006). Road extraction from aerial images using a region competition algorithm. IEEE Transactions on Image Processing, 15, 1192–1201.

    Article  Google Scholar 

  • Antonarakis, A. S., Richards, K. S., & Brasington, J. (2008). Object-based land cover classification using airborne LiDAR. Remote Sensing of Environment, 112, 2988–2998.

    Article  Google Scholar 

  • BaczyÅ„ski, D., & Parol, M. (2004). Influence of artificial neural network structure on quality of short-term electric energy consumption forecast. IEE Proceedings-Generation, Transmission and Distribution, 151, 241–245.

    Article  Google Scholar 

  • Bazi, Y., & Melgani, F. (2006). Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 44, 3374–3385.

    Article  Google Scholar 

  • Bentaleb, K., Lakouari, N., Marzoug, R., Ez-Zahraouy, H., & Benyoussef, A. (2014). Simulation study of traffic car accidents in single-lane highway. Physica A: Statistical Mechanics and its Applications, 413, 473–480.

    Article  Google Scholar 

  • Boyko, A., & Funkhouser, T. (2011). Extracting roads from dense point clouds in large scale urban environment. ISPRS Journal of Photogrammetry and Remote Sensing, 66, S2–S12.

    Article  Google Scholar 

  • Brennan, R., & Webster, T. (2006). Object-oriented land cover classification of lidar-derived surfaces. Canadian Journal of Remote Sensing, 32, 162–172.

    Article  Google Scholar 

  • Briese, C., Pfeifer, N., & Dorninger, P. (2002). Applications of the robust interpolation for DTM determination. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34, 55–61.

    Google Scholar 

  • Butenuth, M., Straub, B.-M., Heipke, C., & Willrich, F. (2003). Tree supported road extraction from arial images using global and local context knowledge. In Computer vision systems (pp. 162–171). Berlin: Springer.

    Google Scholar 

  • Choi, Y.-W., Jang, Y.-W., Lee, H.-J., & Cho, G.-S. (2008). Three-dimensional LiDAR data classifying to extract road point in urban area. IEEE Geoscience and Remote Sensing Letters, 5, 725–729.

    Article  Google Scholar 

  • Clode, S., Kootsookos, P. J., & Rottensteiner, F. (2004). The automatic extraction of roads from LIDAR data. ISPRS 2004.

    Google Scholar 

  • Coren, F., & Sterzai, P. (2006). Radiometric correction in laser scanning. International Journal of Remote Sensing, 27, 3097–3104.

    Article  Google Scholar 

  • Ding, S., Xu, X., & Nie, R. (2013). Extreme learning machine and its applications. Neural Computing and Applications, 25, 549–556.

    Article  Google Scholar 

  • Evans, J. S., & Hudak, A. T. (2007). A multiscale curvature algorithm for classifying discrete return lidar in forested environments. IEEE Transactions on Geoscience and Remote Sensing, 45, 1029–1038.

    Article  Google Scholar 

  • Fanos, A. M., Pradhan, B., Aziz, A. A., Jebur, M. N., & Park, H. J. (2016). Assessment of multi-scenario rockfall hazard based on mechanical parameters using high-resolution airborne laser scanning data and GIS in a tropical area. Environmental Earth Sciences, 75(15), 1129.

    Google Scholar 

  • Fanos, A. M., & Pradhan, B. (2018). Laser scanning systems and techniques in rockfall source identification and risk assessment: a critical review. Earth Systems and Environment, 2(2), 163–182.

    Google Scholar 

  • Fanos, A. M., Pradhan, B., Mansor, S., Yusoff, Z. M., & bin Abdullah, A. F. (2018). A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data. Landslides, 15(9), 1833–1850.

    Google Scholar 

  • Friedl, M. A., & Brodley, C. E. (1997). Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61, 399–409.

    Article  Google Scholar 

  • Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmospheric Environment, 32, 2627–2636.

    Article  Google Scholar 

  • Gokgoz, E., & Subasi, A. (2015). Comparison of decision tree algorithms for EMG signal classification using DWT. Biomedical Signal Processing and Control, 18, 138–144.

    Article  Google Scholar 

  • Gong, L., Zhang, Y., Li, Z., & Bao, Q. (2010). Automated road extraction from LiDAR data based on intensity and aerial photo. In 2010 3rd International Congress on Image and Signal Processing (CISP) (pp. 2130–2133).

    Google Scholar 

  • Hodgson, M. E., Jensen, J. R., & Im, J. (2008). Object-based land cover classification using high-posting-density LiDAR Data. GIScience & Remote Sensing, 45, 209–228.

    Article  Google Scholar 

  • Hu, X., Tao, C. V., & Hu, Y. (2004). Automatic road extraction from dense urban area by integrated processing of high resolution imagery and lidar data. In International archives of photogrammetry, remote sensing and spatial information sciences. Istanbul, Turkey (Vol. 35, p. B3).

    Google Scholar 

  • Hu, X., Li, Y., Shan, J., Zhang, J., & Zhang, Y. (2014). Road centerline extraction in complex urban scenes from LiDAR data based on multiple features. IEEE Transactions on Geoscience and Remote Sensing, 52, 7448–7456.

    Article  Google Scholar 

  • Idrees, M. O., & Pradhan, B. (2016). A decade of modern cave surveying with terrestrial laser scanning: A review of sensors, method and application development. International Journal of Speleology, 45(1), 71–88.

    Google Scholar 

  • Idrees, M. O., Pradhan, B., Buchroithner, M. F., Shafri, H. Z. M., & Khairunniza-Bejo, S. (2016) Assessing the transferability of a hybrid Taguchi-objective function method to optimize image segmentation for detecting and counting cave roosting birds using terrestrial laser scanning data. Journal of Applied Remote Sensing, 10(3), 035023.

    Google Scholar 

  • Idrees, M. O., & Pradhan, B. (2018). Geostructural stability assessment of cave using rock surface discontinuity extracted from terrestrial laser scanning point cloud. Journal of Rock Mechanics and Geotechnical Engineering, 10(3), 534–544.

    Google Scholar 

  • Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sensing of Environment, 152, 150–165.

    Article  Google Scholar 

  • Kim, J. G., Han, D. Y., Yu, K. Y., Kim, Y. I., & Rhee, S. M. (2006). Efficient extraction of road information for car navigation applications using road pavement markings obtained from aerial images. Canadian Journal of Civil Engineering, 33, 1320–1331.

    Article  Google Scholar 

  • Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2015). Machine learning in geosciences and remote sensing. Geoscience Frontiers.

    Google Scholar 

  • Li, J., Lee, H. J., & Cho, G. S. (2008). Parallel algorithm for road points extraction from massive LiDAR data (pp. 308–315).

    Google Scholar 

  • MaÅ¡etic, Z., & Subasi, A. (2013). Detection of congestive heart failures using C4. 5 Decision Tree.

    Google Scholar 

  • Matkan, A. A., Hajeb, M., & Sadeghian, S. (2014). Road extraction from lidar data using support vector machine classification. Photogrammetric Engineering & Remote Sensing, 80, 409–422.

    Article  Google Scholar 

  • Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42, 1778–1790.

    Article  Google Scholar 

  • Mena, J. B., & Malpica, J. A. (2005). An automatic method for road extraction in rural and semi-urban areas starting from high resolution satellite imagery. Pattern Recognition Letters, 26, 1201–1220.

    Article  Google Scholar 

  • Mia, M. M. A., Biswas, S. K., Urmi, M. C., & Siddique, A. (2015). An algorithm for training multilayer perceptron (MLP) for image reconstruction using neural network without overfitting.

    Google Scholar 

  • Mokhtarzade, M., & Zoej, M. J. V. (2007). Road detection from high-resolution satellite images using artificial neural networks. International Journal of Applied Earth Observation and Geoinformation, 9, 32–40.

    Article  Google Scholar 

  • Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247–259.

    Article  Google Scholar 

  • Nandi, A., & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110, 11–20.

    Article  Google Scholar 

  • Oommen, T., Misra, D., Twarakavi, N. K. C., Prakash, A., Sahoo, B., & Bandopadhyay, S. (2008). An objective analysis of support vector machine based classification for remote sensing. Mathematical Geosciences, 40, 409–424.

    Article  Google Scholar 

  • Peng, T., Jermyn, I. H., Prinet, V., & Zerubia, J. (2010). Extended phase field higher-order active contour models for networks. International Journal of Computer Vision, 88, 111–128.

    Article  Google Scholar 

  • Platt, J. C. (1999). Using analytic QP and sparseness to speed training of support vector machines. In Advances in neural information processing systems (pp. 557–563).

    Google Scholar 

  • Poullis, C., & You, S. (2010). Delineation and geometric modeling of road networks. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 165–181.

    Article  Google Scholar 

  • Pradhan, B., Jebur, M. N., Shafri, H. Z. M., & Tehrany, M. S. (2016). Data fusion technique using wavelet transform and Taguchi methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery. IEEE Transactions on Geoscience and remote sensing, 54(3), 1610–1622.

    Google Scholar 

  • Priddy, K. L., & Keller, P. E. (2005). Artificial neural networks: an introduction (Vol. 68). SPIE Press.

    Google Scholar 

  • Quinlan, J. R. (2014). C4. 5: Programs for machine learning. Elsevier.

    Google Scholar 

  • Rottensteiner, F. (2009). Status and further prospects of object extraction from image and laser data. In 2009 Joint Urban Remote Sensing Event (pp. 1–10).

    Google Scholar 

  • Rottensteiner, F. (2010). Automation of object extraction from LiDAR in urban areas. In 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 1343–1346).

    Google Scholar 

  • Saghebian, S. M., Sattari, M. T., Mirabbasi, R., & Pal, M. (2013). Ground water quality classification by decision tree method in Ardebil region, Iran. Arabian Journal of Geosciences, 7, 4767–4777.

    Article  Google Scholar 

  • Samadzadegan, F., & Bigdeli, B. (2009). Combining multiple classifiers for automatic road extraction from lidar data.

    Google Scholar 

  • Sameen, M. I., Pradhan, B., Shafri, H. Z., Mezaal, M. R., & bin Hamid, H. (2017). Integration of ant colony optimization and object-based analysis for LiDAR data classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 2055–2066.

    Google Scholar 

  • Sameen, M. I., & Pradhan, B. (2017a). A two-stage optimization strategy for fuzzy object-based analysis using airborne LiDAR and high-resolution orthophotos for urban road extraction. Journal of Sensors, 2017.

    Google Scholar 

  • Sameen, M. I., & Pradhan, B. (2017b). A simplified semi-automatic technique for highway extraction from high-resolution airborne LiDAR data and orthophotos. Journal of the Indian Society of Remote Sensing, 45(3), 395–405.

    Google Scholar 

  • Soliman, O. S. & Mahmoud, A. S. (2012). A classification system for remote sensing satellite images using support vector machine with non-linear kernel functions. In 2012 8th International Conference on Informatics and Systems (INFOS) (pp. BIO-181–BIO-187).

    Google Scholar 

  • Song, M., & Civco, D. (2004). Road extraction using SVM and image segmentation. Photogrammetric Engineering & Remote Sensing, 70, 1365–1371.

    Article  Google Scholar 

  • Vaa, T., Penttinen, M., & Spyropoulou, I. (2007). Intelligent transport systems and effects on road traffic accidents: State of the art. IET Intelligent Transport Systems, 1, 81.

    Article  Google Scholar 

  • Vapnik, V. (2013). The nature of statistical learning theory. Berlin: Springer.

    Google Scholar 

  • Wan, Y., Shen, S., Song, Y., & Liu, S. (2007). A road extraction approach based on fuzzy logic for high-resolution multispectral data. In Fourth International Conference on Fuzzy Systems and Knowledge Discovery, 2007 (FSKD 2007) (pp. 203–207).

    Google Scholar 

  • Wang, G., Zhang, Y., Li, J., & Song, P. (2011). 3D road information extraction from LIDAR data fused with aerial-images. In 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services (ICSDM) (pp. 362–366).

    Google Scholar 

  • White, R. A., Dietterick, B. C., Mastin, T., & Strohman, R. (2010). Forest roads mapped using LiDAR in steep forested terrain. Remote Sensing, 2, 1120–1141.

    Article  Google Scholar 

  • Wiedemann, C., Heipke, C., Mayer, H., & Hinz, S. (1998). Automatic extraction and evaluation of road networks from MOMS-2P imagery. International Archives of Photogrammetry and Remote Sensing, 32, 285–291.

    Google Scholar 

  • Yang, G. Y. C. (1995). Geological mapping from multi-source data using neural networks: Geomatics engineering. University of Calgary.

    Google Scholar 

  • Yao, W., & Han, M. (2011). Remote sensing image classification with parameter optimized support vector machine based on evolutionary computation. In 2011 Fourth International Workshop on Advanced Computational Intelligence (IWACI) (pp. 290–294).

    Google Scholar 

  • Zhan, Y., & Shen, D. (2005). Design efficient support vector machine for fast classification. Pattern Recognition, 38, 157–161.

    Article  Google Scholar 

  • Zhao, J., & You, S. (2012). Road network extraction from airborne LiDAR data using scene context. In 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (pp. 9–16).

    Google Scholar 

  • Zhao, Y., & Zhang, Y. (2008). Comparison of decision tree methods for finding active objects. Advances in Space Research, 41, 1955–1959.

    Article  Google Scholar 

  • Zhao, J., You, S., & Huang, J. (2011). Rapid extraction and updating of road network from airborne LiDAR data. In 2011 IEEE Applied Imagery Pattern Recognition Workshop (AIPR) (pp. 1–7).

    Google Scholar 

  • Zhou, W. (2013). An object-based approach for urban land cover classification: Integrating LiDAR height and intensity data. IEEE Geoscience and Remote Sensing Letters, 10, 928–931.

    Article  Google Scholar 

  • Zhu, P., Lu, Z., Chen, X., Honda, K., & Eiumnoh, A. (2004). Extraction of city roads through shadow path reconstruction using laser data. Photogrammetric Engineering & Remote Sensing, 70, 1433–1440.

    Article  Google Scholar 

  • Zhu, H., Yang, X., & Luo, Y. (2009). Classification of urban remote sensing image based on support vector machines. In 2009 17th International Conference on Geoinformatics (pp. 1–6).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradhan, B., Ibrahim Sameen, M. (2020). An Integrated Machine Learning Approach for Automatic Highway Extraction from Airborne LiDAR Data and Orthophotos. In: Laser Scanning Systems in Highway and Safety Assessment. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-10374-3_5

Download citation

Publish with us

Policies and ethics