Skip to main content

Laser Scanning Technologies in Road Geometry Modeling

  • Chapter
  • First Online:
Laser Scanning Systems in Highway and Safety Assessment

Abstract

Recent developments in laser scanning technology have improved 3D spatial data acquisition in road environments. These technological developments have provided rapid and cost-effective data acquisition for road corridors and surrounding areas (Guan et al. 2014; Li et al. 2016; Li and He 2016; Lin et al. 2011). Several methods have been proposed for the delineation of geometric road information from laser scanning data. Road geometric information includes road width, cross section, and superelevation and involves the number of road lanes and vertical and horizontal curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulwahid, W. M., & Pradhan, B. (2017). Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides, 14(3), 1057–1076.

    Google Scholar 

  • Arastounia, M. (2012). Automatic classification of lidar point clouds in a railway environment (p. 83). Netherlands: University of Twente.

    Google Scholar 

  • Baltsavias, E. P. (1999). Airborne laser scanning: Basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 199–214.

    Article  Google Scholar 

  • Brennan, R., & Webster, T. (2006). Object-oriented land cover classification of lidar-derived surfaces. Canadian Journal of Remote Sensing, 32(2), 162–172.

    Article  Google Scholar 

  • Camacho-Torregrosa, F. J., Perez-Zuriaga, A. M., Campoy-Ungria, J. M., & Garcia-Garcia, A. (2013). New geometric design consistency model based on operating speed profiles for road safety evaluation. Accident Analysis and Prevention, 61, 33–42. https://doi.org/10.1016/j.aap.2012.10.001.

    Article  Google Scholar 

  • Charaniya, A. P., Manduchi, R., & Lodha, S. K. (2004). Supervised parametric classification of aerial lidar data. Paper presented at the Conference on Computer Vision and Pattern Recognition Workshop, 2004. CVPRW ‘04.

    Google Scholar 

  • Fanos, A. M., Pradhan, B., Aziz, A. A., Jebur, M. N., & Park, H. J. (2016). Assessment of multi-scenario rockfall hazard based on mechanical parameters using high-resolution airborne laser scanning data and GIS in a tropical area. Environmental Earth Sciences, 75(15), 1129.

    Google Scholar 

  • Fanos, A. M., Pradhan, B. (2018). Laser scanning systems and techniques in rockfall source identification and risk assessment: A critical review. Earth Systems and Environment, 2(2), 163–182.

    Google Scholar 

  • Fanos, A. M., Pradhan, B., Mansor, S., Yusoff, Z. M., & bin Abdullah, A. F. (2018). A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data. Landslides, 15(9), 1833–1850.

    Google Scholar 

  • Ferraz, A., Mallet, C., & Chehata, N. (2016). Large-scale road detection in forested mountainous areas using airborne topographic lidar data. ISPRS Journal of Photogrammetry and Remote Sensing, 112, 23–36.

    Article  Google Scholar 

  • Fiedler, P. E. K., & Zannin, P. H. T. (2015). Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements. Environmental Impact Assessment Review, 51, 1–9.

    Article  Google Scholar 

  • Gikas, V. (2012). Three-dimensional laser scanning for geometry documentation and construction management of highway tunnels during excavation. Sensors, 12(8), 11249–11270.

    Article  Google Scholar 

  • Glennie, C. (2009). Kinematic terrestrial light-detection and ranging system for scanning. Transportation Research Record: Journal of the Transportation Research Board, 2105(1), 135–141.

    Google Scholar 

  • Gong, J., Zhou, H., Gordon, C., & Jalayer, M. (2012). Mobile terrestrial laser scanning for highway inventory data collection. In Computing in Civil Engineering (pp. 545–552).

    Google Scholar 

  • Goulette, F., Nashashibi, F., Abuhadrous, I., Ammoun, S., & Laurgeau, C. (2006). An integrated on-board laser range sensing system for on-the-way city and road modelling. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(A).

    Google Scholar 

  • Guan, H., Li, J., Yu, Y., Wang, C., Chapman, M., & Yang, B. (2014). Using mobile laser scanning data for automated extraction of road markings. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 93–107.

    Article  Google Scholar 

  • Guan, H., Li, J., Yu, Y., Ji, Z., & Wang, C. (2015). Using mobile LiDAR data for rapidly updating road markings. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2457–2466.

    Article  Google Scholar 

  • Hartfield, K. A., Landau, K. I., & Van Leeuwen, W. J. (2011). Fusion of high resolution aerial multispectral and LiDAR data: Land cover in the context of urban mosquito habitat. Remote Sensing, 3(11), 2364–2383.

    Article  Google Scholar 

  • He, Y., Song, Z., & Liu, Z. (2017). Updating highway asset inventory using airborne LiDAR. Measurement, 104, 132–141.

    Article  Google Scholar 

  • Hui, Z., Hu, Y., Jin, S., & Yevenyo, Y. Z. (2016). Road centerline extraction from airborne LiDAR point cloud based on hierarchical fusion and optimization. ISPRS Journal of Photogrammetry and Remote Sensing, 118, 22–36.

    Article  Google Scholar 

  • Idrees, M. O., & Pradhan, B. (2016). A decade of modern cave surveying with terrestrial laser scanning: A review of sensors, method and application development. International Journal of Speleology, 45(1), 71–88.

    Google Scholar 

  • Idrees, M. O., Pradhan, B., Buchroithner, M. F., Shafri, H. Z. M., & Khairunniza-Bejo, S. (2016) Assessing the transferability of a hybrid Taguchi-objective function method to optimize image segmentation for detecting and counting cave roosting birds using terrestrial laser scanning data. Journal of Applied Remote Sensing, 10(3), 035023.

    Google Scholar 

  • Idrees, M. O., & Pradhan, B. (2018). Geostructural stability assessment of cave using rock surface discontinuity extracted from terrestrial laser scanning point cloud. Journal of Rock Mechanics and Geotechnical Engineering, 10(3), 534–544.

    Google Scholar 

  • Jalayer, M., Gong, J., Zhou, H., & Grinter, M. (2015). Evaluation of remote sensing technologies for collecting roadside feature data to support highway safety manual implementation. Journal of Transportation Safety & Security, 7(4), 345–357.

    Article  Google Scholar 

  • Kang, M.-W., Shariat, S., & Jha, M. K. (2013). New highway geometric design methods for minimizing vehicular fuel consumption and improving safety. Transportation Research Part C: Emerging Technologies, 31, 99–111. https://doi.org/10.1016/j.trc.2013.03.002.

    Article  Google Scholar 

  • Kukko, A., Jaakkola, A., Lehtomaki, M., Kaartinen, H., & Chen, Y. (2009, May). Mobile mapping system and computing methods for modeling of the road environment. In 2009 Joint Urban Remote Sensing Event (pp. 1–6). IEEE.

    Google Scholar 

  • Kumar, P., McElhinney, C. P., Lewis, P., & McCarthy, T. (2013). An automated algorithm for extracting road edges from terrestrial mobile LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 85, 44–55.

    Article  Google Scholar 

  • Kumar, P., McElhinney, C. P., Lewis, P., & McCarthy, T. (2014). Automated road markings extraction from mobile laser scanning data. International Journal of Applied Earth Observation and Geoinformation, 32, 125–137. https://doi.org/10.1016/j.jag.2014.03.023.

    Article  Google Scholar 

  • Li, P., & He, J. (2016). Geometric design safety estimation based on tire–road side friction. Transportation Research Part C: Emerging Technologies, 63, 114–125. https://doi.org/10.1016/j.trc.2015.12.009.

    Article  Google Scholar 

  • Li, M., Stein, A., Bijker, W., & Zhan, Q. (2016). Region-based urban road extraction from VHR satellite images using binary partition tree. International Journal of Applied Earth Observation and Geoinformation, 44, 217–225.

    Article  Google Scholar 

  • Lin, X., Zhang, J., Liu, Z., Shen, J., & Duan, M. (2011). Semi-automatic extraction of road networks by least squares interlaced template matching in urban areas. International Journal of Remote Sensing, 32(17), 4943–4959. https://doi.org/10.1080/01431161.2010.493565.

    Article  Google Scholar 

  • Liu, Y., Monteiro, S. T., & Saber, E. (2016, July). Vehicle detection from aerial color imagery and airborne LiDAR data. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 1384–1387). IEEE.

    Google Scholar 

  • Minh, N. Q., & Hien, L. P. (2011). Land cover classification using LiDAR intensity data and neural network. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 29(4), 429–438.

    Article  Google Scholar 

  • Pagounis, V., Tsakiri, M., & Palaskas, S. (2007). Road safety analysis: Terrestrial laser scanning to improve road safety.

    Google Scholar 

  • Pereira, L. M. G., & Janssen, L. L. F. (1999). Suitability of laser data for DTM generation: A case study in the context of road planning and design, ISPRS Journal of Photogrammetry and Remote Sensing, 54, 244–253.

    Google Scholar 

  • Pradhan, B., Jebur, M. N., Shafri, H. Z. M., & Tehrany, M. S. (2016). Data fusion technique using wavelet transform and Taguchi methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery. IEEE Transactions on Geoscience and remote sensing, 54(3), 1610–1622.

    Google Scholar 

  • Pradhan, B. (2017). Laser Scanning Applications in Landslide Assessment. Springer International Publishing, Germany. ISBN 978-3-319-55341-2; eBook ISBN 978-3-319-55342-9.

    Google Scholar 

  • Pu, S., Rutzinger, M., Vosselman, G., & Elberink, S. O. (2011). Recognizing basic structures from mobile laser scanning data for road inventory studies. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), S28–S39.

    Article  Google Scholar 

  • Puente, I., González-Jorge, H., Martínez-Sánchez, J., & Arias, P. (2013). Review of mobile mapping and surveying technologies. Measurement, 46(7), 2127–2145.

    Google Scholar 

  • Sameen, M. I., Pradhan, B., Shafri, H. Z., Mezaal, M. R., & bin Hamid, H. (2017). Integration of ant colony optimization and object-based analysis for LiDAR data classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 2055–2066.

    Google Scholar 

  • Sameen, M. I., & Pradhan, B. (2017a). A two-stage optimization strategy for fuzzy object-based analysis using airborne LiDAR and high-resolution orthophotos for urban road extraction. Journal of Sensors, 2017.

    Google Scholar 

  • Sameen, M. I., & Pradhan, B. (2017b). Assessment of the effects of expressway geometric design features on the frequency of accident crash rates using high-resolution laser scanning data and GIS. Geomatics, Natural Hazards and Risk, 8(2), 733–747. http://dx.doi.org/10.1080/19475705.2016.1265012.

  • Sameen, M. I., & Pradhan, B. (2017c). A simplified semi-automatic technique for highway extraction from high-resolution airborne LiDAR data and orthophotos. Journal of the Indian Society of Remote Sensing, 45(3), 395–405.

    Google Scholar 

  • Shamayleh, H., & Khattak, A. (2003, August). Utilization of LiDAR technology for highway inventory. In Proceedings of the 2003 Mid-continent Transportation Research Symposium, Ames, Iowa.

    Google Scholar 

  • Tao, C. V., & Li, J. (eds.) (2007) Advances in Mobile Mapping Technology. Taylor & Francis Group, London, ISBN 978-0-415-42723-4.

    Google Scholar 

  • Uddin, W. (2008). Airborne laser terrain mapping for expediting highway projects: Evaluation of accuracy and cost. Journal of Construction Engineering and Management, 134(6), 411–420.

    Article  Google Scholar 

  • Vosselman, G., & Maas, H-G. (eds.) (2010). Airborne and terrestrial laser scanning, Boca. Raton, London, New York, CRC Press, Taylor and Francis Group, 2010, xxiv'311 pp., ISBN 978-1904445-87-6.

    Google Scholar 

  • White, R. A., Dietterick, B. C., Mastin, T., & Strohman, R. (2010). Forest roads mapped using LiDAR in steep forested terrain. Remote Sensing, 2(4), 1120–1141. https://doi.org/10.3390/rs2041120.

    Article  Google Scholar 

  • Williams, K., Olsen, M. J., Roe, G. V., & Glennie, C. (2013). Synthesis of transportation applications of mobile LiDAR. Remote Sensing, 5(9), 4652–4692.

    Article  Google Scholar 

  • Wulder, M. A., White, J. C., Nelson, R. F., Næsset, E., Ørka, H. O., Coops, N. C., et al. (2012). Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment, 121, 196–209.

    Article  Google Scholar 

  • Yan, W. Y., Shaker, A., & El-Ashmawy, N. (2015). Urban land cover classification using airborne LiDAR data: A review. Remote Sensing of Environment, 158, 295–310. https://doi.org/10.1016/j.rse.2014.11.001.

    Article  Google Scholar 

  • Yan, W. Y., Shaker, A., Habib, A., & Kersting, A. P. (2012). Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 35–44. https://doi.org/10.1016/j.isprsjprs.2011.10.005.

    Article  Google Scholar 

  • Yang, B., Fang, L., & Li, J. (2013). Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 80–93.

    Article  Google Scholar 

  • Yen, K. S., Ravani, B., & Lasky, T. A. (2011). LiDAR for data efficiency (No. WA-RD 778.1).

    Google Scholar 

  • Yu, Y., Li, J., Guan, H., Jia, F., & Wang, C. (2015). Learning hierarchical features for automated extraction of road markings from 3-D mobile LiDAR point clouds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2), 709–726.

    Article  Google Scholar 

  • Zampa, F., & Conforti, D. (2009). Mapping with mobile lidar. GIM International, 23(4), 35–37.

    Google Scholar 

  • Zhang, J., Duan, M., Yan, Q., & Lin, X. (2014). Automatic vehicle extraction from airborne LiDAR data using an object-based point cloud analysis method. Remote Sensing, 6(9), 8405–8423.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradhan, B., Ibrahim Sameen, M. (2020). Laser Scanning Technologies in Road Geometry Modeling. In: Laser Scanning Systems in Highway and Safety Assessment. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-10374-3_1

Download citation

Publish with us

Policies and ethics