Skip to main content

Fabrication of Polyaniline Supported Nanocomposites and Their Sensing Application for Detection of Environmental Pollutants

  • Chapter
  • First Online:
Modern Age Waste Water Problems

Abstract

Nanoscale composite materials have played a significant role in sensing of gases, owing to their high surface area, higher mechanical strength with efficient chemical activity as well as cost effective nature. The present chapter deals with synthesis and characterization of Polyaniline (PANI) based nanocomposites ion-exchanger and nanomaterials in addition to their sensing applications in various fields. These nanomaterials have been explored on the basis of advanced techniques of characterizations. Besides the sensing materials, on the basis of ion uptake capacity, these nanocomposite ion-exchange materials can also be used for the treatment of meal ions from industrial wastewaters. This chapter mainly focuses on the synthesis of PANI based nanocomposites and their applications as gas sensors and biosensors. The PANI nanomaterials demonstrated impressive results and outstanding sensing behaviour. It has been found that PANI based nanocomposite materials are not only used for the detection of toxic gases, but, these materials also facilitated immobilization of bioreceptors (e.g., enzymes, antigen–antibodies, and nucleic acids, etc.) for the exposure of biological agents through a combination of biochemical and electrochemical reactions. In future, PANI based nanocomposite materials are expected to open new approaches for demonstrating their outstanding applications in diverse fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulla S, Mathew TL, Pullithadathil B (2015) Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sensors Actuators B Chem 221:1523–1534

    Article  CAS  Google Scholar 

  • Adams P et al (1996) Low temperature synthesis of high molecular weight polyaniline. Polymer 37(15):3411–3417

    Article  CAS  Google Scholar 

  • Ampuero S, Bosset J (2003) The electronic nose applied to dairy products: a review. Sensors Actuators B Chem 94(1):1–12

    Article  CAS  Google Scholar 

  • Ansari MO, Mohammad F (2011) Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline: titanium dioxide (pTSA/Pani: TiO2) nanocomposites. Sensors Actuators B Chem 157(1):122–129

    Article  CAS  Google Scholar 

  • Ansari MO et al (2013) Thermal stability in terms of DC electrical conductivity retention and the efficacy of mixing technique in the preparation of nanocomposites of graphene/polyaniline over the carbon nanotubes/polyaniline. Compos Part B 47:155–161

    Article  CAS  Google Scholar 

  • Ansari MO et al (2014) Ammonia vapor sensing and electrical properties of fibrous multi-walled carbon nanotube/polyaniline nanocomposites prepared in presence of cetyl-trimethylammonium bromide. J Ind Eng Chem 20(4):2010–2017

    Article  CAS  Google Scholar 

  • Arrad O, Sasson Y (1989) Commercial ion exchange resins as catalysts in solid-solid-liquid reactions. J Org Chem 54(21):4993–4998

    Article  CAS  Google Scholar 

  • Arsat R et al (2011) Hydrogen gas sensor based on highly ordered polyaniline/multiwall carbon nanotubes composite. Sens Lett 9(2):940–943

    Article  CAS  Google Scholar 

  • Athawale AA, Kulkarni MV (2000) Polyaniline and its substituted derivatives as sensor for aliphatic alcohols. Sensors Actuators B Chem 67(1):173–177

    Article  CAS  Google Scholar 

  • Athawale AA, Bhagwat S, Katre PP (2006) Nanocomposite of Pd–polyaniline as a selective methanol sensor. Sensors Actuators B Chem 114(1):263–267

    Article  CAS  Google Scholar 

  • Ayad MM, El-Hefnawey G, Torad NL (2009) A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance. J Hazard Mater 168(1):85–88

    Article  CAS  Google Scholar 

  • Azim-Araghi M, Jafari M (2010) Electrical and gas sensing properties of polyaniline-chloroaluminium phthalocyanine composite thin films. Eur Phys J Appl Phys 52(01):10402

    Article  Google Scholar 

  • Baraton M-I (2008) Sensors for environment, health and security: advanced materials and technologies. Springer, Dordrecht

    Google Scholar 

  • Bo Y et al (2011) A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochim Acta 56(6):2676–2681

    Article  CAS  Google Scholar 

  • Bushra R et al (2014) Synthesis, characterization, antimicrobial activity and applications of polyanilineTi (IV) arsenophosphate adsorbent for the analysis of organic and inorganic pollutants. J Hazard Mater 264:481–489

    CAS  Google Scholar 

  • Castro M et al (2009) Carbon nanotubes/poly (ε-caprolactone) composite vapour sensors. Carbon 47(8):1930–1942

    Article  CAS  Google Scholar 

  • Cavallo P et al (2015) Understanding the sensing mechanism of polyaniline resistive sensors. Effect of humidity on sensing of organic volatiles. Sensors Actuators B Chem 210:574–580

    Article  CAS  Google Scholar 

  • Chaudhary V, Kaur A (2015) Enhanced room temperature sulfur dioxide sensing behaviour of in situ polymerized polyaniline–tungsten oxide nanocomposite possessing honeycomb morphology. RSC Adv 5(90):73535–73544

    Article  CAS  Google Scholar 

  • Choudhury A (2009) Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity. Sensors Actuators B Chem 138(1):318–325

    Article  CAS  Google Scholar 

  • Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29–45

    Article  CAS  Google Scholar 

  • Conn C et al (1998) A polyaniline-based selective hydrogen sensor. Electroanalysis 10(16):1137–1141

    Article  CAS  Google Scholar 

  • Crowley K et al (2010) Fabrication of polyaniline-based gas sensors using piezoelectric inkjet and screen printing for the detection of hydrogen sulfide. Sens J IEEE 10(9):1419–1426

    Article  CAS  Google Scholar 

  • Deshpande N et al (2009) Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications. Sensors Actuators B Chem 138(1):76–84

    Article  CAS  Google Scholar 

  • Dey A et al (2012) Mediator free highly sensitive polyaniline–gold hybrid nanocomposite based immunosensor for prostate-specific antigen (PSA) detection. J Mater Chem 22(29):14763–14772

    Article  CAS  Google Scholar 

  • Dhand C et al (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26(6):2811–2821

    Article  CAS  Google Scholar 

  • Dhawale D et al (2008) Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO2 heterojunction. Sensors Actuators B Chem 134(2):988–992

    Article  CAS  Google Scholar 

  • Dhawale D et al (2010a) Room temperature LPG sensor based on n-CdS/p-polyaniline heterojunction. Sensors Actuators B Chem 145(1):205–210

    Article  CAS  Google Scholar 

  • Dhawale D et al (2010b) Room temperature liquefied petroleum gas (LPG) sensor. Sensors Actuators B Chem 147(2):488–494

    Article  CAS  Google Scholar 

  • Dhingra M et al (2013) Impact of interfacial interactions on optical and ammonia sensing in zinc oxide/polyaniline structures. Bull Mater Sci 36(4):647–652

    Article  CAS  Google Scholar 

  • Di W, Ivaska A (2006) Electrochemical biosensors based on polyaniline. Chem Anal 51(6):839–852

    Google Scholar 

  • Diggikar RS et al (2013) Formation of multifunctional nanocomposites with ultrathin layers of polyaniline (PANI) on silver vanadium oxide (SVO) nanospheres by in situ polymerization. J Mater Chem A 1(12):3992–4001

    Article  CAS  Google Scholar 

  • Dimitriev O (2003) Interaction of polyaniline and transition metal salts: formation of macromolecular complexes. Polym Bull 50(1–2):83–90

    Article  CAS  Google Scholar 

  • Docquier N, Candel S (2002) Combustion control and sensors: a review. Prog Energy Combust Sci 28(2):107–150

    Article  CAS  Google Scholar 

  • Du M et al (2012) Fabrication of DNA/graphene/polyaniline nanocomplex for label-free voltammetric detection of DNA hybridization. Talanta 88:439–444

    Article  CAS  Google Scholar 

  • Dubbe A (2003) Fundamentals of solid state ionic micro gas sensors. Sensors Actuators B Chem 88(2):138–148

    Article  CAS  Google Scholar 

  • Feng J, MacDiarmid A (1999) Sensors using octaaniline for volatile organic compounds. Synth Met 102(1):1304–1305

    Article  CAS  Google Scholar 

  • Fu L, Yu A (2014) Carbon nanotubes based thin films: fabrication, characterization and applications. Rev Adv Mater Sci 36:40–61

    CAS  Google Scholar 

  • Fuke MV et al (2008) Evaluation of co-polyaniline nanocomposite thin films as humidity sensor. Talanta 76(5):1035–1040

    Article  CAS  Google Scholar 

  • Fuke MV et al (2009) Ag-polyaniline nanocomposite cladded planar optical waveguide based humidity sensor. J Mater Sci Mater Electron 20(8):695–703

    Article  CAS  Google Scholar 

  • Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12(3):608–622

    Article  CAS  Google Scholar 

  • Genies E et al (1990) Polyaniline: a historical survey. Synth Met 36(2):139–182

    Article  CAS  Google Scholar 

  • Gopalan AI et al (2009) An electrochemical glucose biosensor exploiting a polyaniline grafted multiwalled carbon nanotube/perfluorosulfonate ionomer–silica nanocomposite. Biomaterials 30(30):5999–6005

    Article  CAS  Google Scholar 

  • Hasan M et al (2015) Ammonia sensing and DC electrical conductivity studies of p-toluene sulfonic acid doped cetyltrimethylammonium bromide assisted V2O5@ polyaniline composite nanofibers. J Ind Eng Chem 22:147–152

    Article  CAS  Google Scholar 

  • Hoa D et al (1992) A biosensor based on conducting polymers. Anal Chem 64(21):2645–2646

    Article  CAS  Google Scholar 

  • Hsu YF et al (2008) Undoped p-type ZnO Nanorods synthesized by a hydrothermal method. Adv Funct Mater 18(7):1020–1030

    Article  CAS  Google Scholar 

  • Hu H et al (2002) Adsorption kinetics of optochemical NH 3 gas sensing with semiconductor polyaniline films. Sensors Actuators B Chem 82(1):14–23

    Article  CAS  Google Scholar 

  • Huang W-S, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans 82(8):2385–2400

    Article  CAS  Google Scholar 

  • Huang J et al (2011) Electrochemical immunosensor based on polyaniline/poly (acrylic acid) and Au-hybrid graphene nanocomposite for sensitivity enhanced detection of salbutamol. Food Res Int 44(1):92–97

    Article  CAS  Google Scholar 

  • Imisides M, John R, Wallace G (1996) Microsensors based on conducting polymers. ChemTech 26(5):19–25

    Google Scholar 

  • Jain S et al (2003) Humidity sensing with weak acid-doped polyaniline and its composites. Sensors Actuators B Chem 96(1):124–129

    Article  CAS  Google Scholar 

  • Joshi S, Lokhande C, Han S-H (2007) A room temperature liquefied petroleum gas sensor based on all-electrodeposited n-CdSe/p-polyaniline junction. Sensors Actuators B Chem 123(1):240–245

    Article  CAS  Google Scholar 

  • Kaur B, Srivastava R (2015) Simultaneous determination of epinephrine, paracetamol, and folic acid using transition metal ion-exchanged polyaniline–zeolite organic–inorganic hybrid materials. Sensors Actuators B Chem 211:476–488

    Article  CAS  Google Scholar 

  • Khan AA (2006) Applications of Hg (II) sensitive polyaniline Sn (IV) phosphate composite cation-exchange material in determination of Hg2+ from aqueous solutions and in making ion-selective membrane electrode. Sensors Actuators B Chem 120(1):10–18

    Article  CAS  Google Scholar 

  • Khan AA, Baig U (2013a) Electrical conductivity and ammonia sensing studies on in situ polymerized poly (3-methythiophene)–titanium (IV) molybdophosphate cation exchange nanocomposite. Sensors Actuators B Chem 177:1089–1097

    Article  CAS  Google Scholar 

  • Khan AA, Baig U (2013b) Electrical conductivity and humidity sensing studies on synthetic organic–inorganic poly-o-toluidine–titanium (IV) phosphate cation exchange nanocomposite. Solid State Sci 15:47–52

    Article  CAS  Google Scholar 

  • Khan AA, Khalid M, Niwas R (2010a) Humidity and ammonia vapor sensing applications of polyaniline–polyacrylonitrile composite films. Sci Adv Mater 2(4):474–480

    Article  CAS  Google Scholar 

  • Khan AA, Khalid M, Baig U (2010b) Synthesis and characterization of polyaniline–titanium (IV) phosphate cation exchange composite: methanol sensor and isothermal stability in terms of DC electrical conductivity. React Funct Polym 70(10):849–855

    Article  CAS  Google Scholar 

  • Khan AA, Baig U, Khalid M (2011) Ammonia vapor sensing properties of polyaniline–titanium (IV) phosphate cation exchange nanocomposite. J Hazard Mater 186(2):2037–2042

    Article  CAS  Google Scholar 

  • Khan AA, Baig U, Khalid M (2013a) Electrically conductive polyaniline-titanium (IV) molybdophosphate cation exchange nanocomposite: synthesis, characterization and alcohol vapour sensing properties. J Ind Eng Chem 19(4):1226–1233

    Article  CAS  Google Scholar 

  • Khan AA et al (2013b) Ion-exchange and humidity sensing properties of poly-o-anisidine sn (IV) arsenophosphate nano-composite cation-exchanger. J Environ Chem Eng 1(3):310–319

    Article  CAS  Google Scholar 

  • Khuspe G et al (2013) Ammonia gas sensing properties of CSA doped PANi-SnO2 nanohybrid thin films. Synth Met 185:1–8

    Google Scholar 

  • Kim I et al (2010) Gas sensor for CO and NH 3 using polyaniline/CNTs composite at room temperature. In: Nanotechnology (IEEE-NANO), 10th IEEE conference on 2010, IEEE

    Google Scholar 

  • Koul S, Chandra R (2005) Mixed dopant conducting polyaniline reusable blend for the detection of aqueous ammonia. Sensors Actuators B Chem 104(1):57–67

    Article  CAS  Google Scholar 

  • Le TH et al (2013) Electrosynthesis of polyaniline–mutilwalled carbon nanotube nanocomposite films in the presence of sodium dodecyl sulfate for glucose biosensing. Adv Nat Sci Nanosci Nanotechnol 4(2):025014

    Article  CAS  Google Scholar 

  • Li Z-F et al (2013a) Understanding the response of nanostructured polyaniline gas sensors. Sensors Actuators B Chem 183:419–427

    Article  CAS  Google Scholar 

  • Li J et al (2013b) Electrochemical immunosensor based on graphene–polyaniline composites and carboxylated graphene oxide for estradiol detection. Sensors Actuators B Chem 188:99–105

    Article  CAS  Google Scholar 

  • Lin M et al (2012) Electrochemical immunoassay of benzo [a] pyrene based on dual amplification strategy of electron-accelerated Fe3O4/polyaniline platform and multi-enzyme-functionalized carbon sphere label. Anal Chim Acta 722:100–106

    Article  CAS  Google Scholar 

  • Liu P-Z et al (2013) Electrochemiluminescence immunosensor based on graphene oxide nanosheets/polyaniline nanowires/CdSe quantum dots nanocomposites for ultrasensitive determination of human interleukin-6. Electrochim Acta 113:176–180

    Article  CAS  Google Scholar 

  • Lowe CR (1984) Biosensors. Trends Biotechnol 2(3):59–65

    Article  CAS  Google Scholar 

  • Malinauskas A et al (2004) Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: a review. Talanta 64(1):121–129

    Article  CAS  Google Scholar 

  • Matsuguchi M et al (2002) Effect of NH 3 gas on the electrical conductivity of polyaniline blend films. Synth Met 128(1):15–19

    Article  CAS  Google Scholar 

  • Muhammad-Tahir Z, Alocilja EC (2003) A conductometric biosensor for biosecurity. Biosens Bioelectron 18(5):813–819

    Article  CAS  Google Scholar 

  • Nabi S et al (2010) Development of composite ion-exchange adsorbent for pollutants removal from environmental wastes. Chem Eng J 165(2):405–412

    Article  CAS  Google Scholar 

  • Nabi S et al (2011a) Synthesis and characterization of nano-composite ion-exchanger; its adsorption behavior. Colloids Surf B: Biointerfaces 87(1):122–128

    Article  CAS  Google Scholar 

  • Nabi S et al (2011b) Heavy-metals separation from industrial effluent, natural water as well as from synthetic mixture using synthesized novel composite adsorbent. Chem Eng J 175:8–16

    Article  CAS  Google Scholar 

  • Nabi S et al (2011c) Synthesis and characterization of polyanilineZr (IV) sulphosalicylate composite and its applications (1) electrical conductivity, and (2) antimicrobial activity studies. Chem Eng J 173(3):706–714

    Article  CAS  Google Scholar 

  • Navale S et al (2014) Camphor sulfonic acid doped PPy/α-Fe2O3 hybrid nanocomposites as NO2 sensors. RSC Adv 4(53):27998–28004

    Article  CAS  Google Scholar 

  • Novák P et al (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97(1):207–282

    Article  Google Scholar 

  • Ozdemir C et al (2010) Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix. Food Chem 119(1):380–385

    Article  CAS  Google Scholar 

  • Parvatikar N et al (2006) Electrical and humidity sensing properties of polyaniline/WO3 composites. Sensors Actuators B Chem 114(2):599–603

    Article  CAS  Google Scholar 

  • Patil S et al (2011) Fabrication of polyaniline-ZnO nanocomposite gas sensor. Sens Transducer 134(11):120

    CAS  Google Scholar 

  • Pawar S et al (2011) Fabrication of polyaniline/TiO2 nanocomposite ammonia vapor sensor. J Nano Electron Phys 3(1):1056

    Google Scholar 

  • Prabhakar N et al (2008) Improved electrochemical nucleic acid biosensor based on polyaniline-polyvinyl sulphonate. Electrochim Acta 53(12):4344–4350

    Article  CAS  Google Scholar 

  • Prathap MA, Srivastava R, Satpati B (2013) Simultaneous detection of guanine, adenine, thymine, and cytosine at polyaniline/MnO2 modified electrode. Electrochim Acta 114:285–295

    Article  CAS  Google Scholar 

  • Radhakrishnan S et al (2013) Polypyrrole nanotubes–polyaniline composite for DNA detection using methylene blue as intercalator. Anal Methods 5(4):1010–1015

    Article  CAS  Google Scholar 

  • Raj AD et al (2010) Self assembled V2O5 nanorods for gas sensors. Curr Appl Phys 10(2):531–537

    Article  Google Scholar 

  • Ram MK, Yavuz O, Aldissi M (2005a) NO2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite. Synth Met 151(1):77–84

    Article  CAS  Google Scholar 

  • Ram MK et al (2005b) CO gas sensing from ultrathin nano-composite conducting polymer film. Sensors Actuators B Chem 106(2):750–757

    Article  CAS  Google Scholar 

  • Raman NK, Anderson MT, Brinker CJ (1996) Template-based approaches to the preparation of amorphous, nanoporous silicas. Chem Mater 8(8):1682–1701

    Article  CAS  Google Scholar 

  • Raut B et al (2012) Novel method for fabrication of polyaniline–CdS sensor for H2S gas detection. Measurement 45(1):94–100

    Article  Google Scholar 

  • Riegel J, Neumann H, Wiedenmann H-M (2002) Exhaust gas sensors for automotive emission control. Solid State Ionics 152:783–800

    Article  Google Scholar 

  • Rujisamphan N et al (2016) Co-sputtered metal and polymer nanocomposite films and their electrical responses for gas sensing application. Appl Surf Sci 368:114–121

    Article  CAS  Google Scholar 

  • Sadek A et al (2006) A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite. Nanotechnology 17(17):4488

    Article  CAS  Google Scholar 

  • Sadek A et al (2008) A polyaniline/WO3 nanofiber composite-based ZnO/64 YX LiNbO3 SAW hydrogen gas sensor. Synth Met 158(1):29–32

    Article  CAS  Google Scholar 

  • Sajjan K et al (2013) Humidity sensing property of polyaniline-cromium oxide nanocomposites. In: Proceeding of international conference on recent trends in applied physics and material science: RAM 2013, AIP Publishing

    Google Scholar 

  • Santhanam K, Gupta N (1993) Conducting-polymer electrodes in batteries. TRIP 1:284–289

    CAS  Google Scholar 

  • Sarfraz J et al (2013) Printed hydrogen sulfide gas sensor on paper substrate based on polyaniline composite. Thin Solid Films 534:621–628

    Article  CAS  Google Scholar 

  • Sen T et al (2014) Polyaniline/Îł-Fe2O3 nanocomposite for room temperature LPG sensing. Sensors Actuators B Chem 190:120–126

    Article  CAS  Google Scholar 

  • Shahadat M et al (2012) Synthesis, characterization, photolytic degradation, electrical conductivity and applications of a nanocomposite adsorbent for the treatment of pollutants. RSC Adv 2(18):7207–7220

    Article  CAS  Google Scholar 

  • Shahadat M et al (2015) Titanium-based nanocomposite materials: a review of recent advances and perspectives. Colloids Surf B: Biointerfaces 126:121–137

    Article  CAS  Google Scholar 

  • Shahadat M et al (2017) A critical review on the prospect of polyaniline-grafted biodegradable nanocomposite. Adv Colloid Interf Sci 249:2–16

    Article  CAS  Google Scholar 

  • Sharma S et al (2002) Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sensors Actuators B Chem 85(1):131–136

    Article  CAS  Google Scholar 

  • Shirsat MD et al (2009) Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor. Appl Phys Lett 94(8):083502

    Article  CAS  Google Scholar 

  • Shukla S et al (2012) Fabrication of electro-chemical humidity sensor based on zinc oxide/polyaniline nanocomposites. Adv Mater Lett 3(5):421–425

    Article  CAS  Google Scholar 

  • Singh V et al (2008) Synthesis and characterization of polyaniline–carboxylated PVC composites: application in development of ammonia sensor. Sensors Actuators B Chem 132(1):99–106

    Article  CAS  Google Scholar 

  • Singla M, Awasthi S, Srivastava A (2007) Humidity sensing; using polyaniline/Mn3O4 composite doped with organic/inorganic acids. Sensors Actuators B Chem 127(2):580–585

    Article  CAS  Google Scholar 

  • Spain E et al (2011) High sensitivity DNA detection using gold nanoparticle functionalised polyaniline nanofibres. Biosens Bioelectron 26(5):2613–2618

    Article  CAS  Google Scholar 

  • Spain E, Keyes TE, Forster RJ (2013) Vapour phase polymerised polyaniline–gold nanoparticle composites for DNA detection. J Electroanal Chem 711:38–44

    Article  CAS  Google Scholar 

  • Srivastava S et al (2010) TiO2/PANI And MWNT/PANI composites thin films For hydrogen gas sensing. In: AIP conference proceedings

    Google Scholar 

  • Sun X, Qiao L, Wang X (2013) A novel immunosensor based on Au nanoparticles and polyaniline/multiwall carbon nanotubes/chitosan nanocomposite film functionalized interface. Nano-Micro Lett 5(3):191–201

    Article  CAS  Google Scholar 

  • Sutar D et al (2007) Preparation of nanofibrous polyaniline films and their application as ammonia gas sensor. Sensors Actuators B Chem 128(1):286–292

    Article  CAS  Google Scholar 

  • Syed AA, Dinesan MK (1991) Review: polyaniline – a novel polymeric material. Talanta 38(8):815–837

    Article  CAS  Google Scholar 

  • Tai H et al (2007) Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film. Sensors Actuators B Chem 125(2):644–650

    Article  CAS  Google Scholar 

  • Tovide O et al (2014) Graphenated polyaniline-doped tungsten oxide nanocomposite sensor for real time determination of phenanthrene. Electrochim Acta 128:138–148

    Article  CAS  Google Scholar 

  • Vatutsina O et al (2007) A new hybrid (polymer/inorganic) fibrous sorbent for arsenic removal from drinking water. React Funct Polym 67(3):184–201

    Article  CAS  Google Scholar 

  • Verma SK et al (2015) Poly (m-aminophenol)/functionalized multi-walled carbon nanotube nanocomposite based alcohol sensors. Sensors Actuators B Chem 219:199–208

    Article  CAS  Google Scholar 

  • Vijayan A et al (2008) Optical fibre based humidity sensor using co-polyaniline clad. Sensors Actuators B Chem 129(1):106–112

    Article  CAS  Google Scholar 

  • Wang X et al (2012) Synthesis of nestlike ZnO hierarchically porous structures and analysis of their gas sensing properties. ACS Appl Mater Interfaces 4(2):817–825

    Article  CAS  Google Scholar 

  • Wang L et al (2014) Graphene sheets, polyaniline and AuNPs based DNA sensor for electrochemical determination of BCR/ABL fusion gene with functional hairpin probe. Biosens Bioelectron 51:201–207

    Article  CAS  Google Scholar 

  • Wilson J et al (2012) Polypyrrole–polyaniline–Au (PPy–PANi–Au) nano composite films for label-free electrochemical DNA sensing. Sensors Actuators B Chem 171:216–222

    Article  CAS  Google Scholar 

  • Wu J et al (2005) A biosensor monitoring DNA hybridization based on polyaniline intercalated graphite oxide nanocomposite. Sensors Actuators B Chem 104(1):43–49

    Article  CAS  Google Scholar 

  • Xian Y et al (2006) Glucose biosensor based on Au nanoparticles–conductive polyaniline nanocomposite. Biosens Bioelectron 21(10):1996–2000

    Article  CAS  Google Scholar 

  • Xu D-M et al (2013a) Multilayer films of layered double hydroxide/polyaniline and their ammonia sensing behavior. J Hazard Mater 262:64–70

    Article  CAS  Google Scholar 

  • Xu H et al (2013b) NO 2 gas sensing with SnO 2–ZnO/PANI composite thick film fabricated from porous nanosolid. Sensors Actuators B Chem 176:166–173

    Article  CAS  Google Scholar 

  • Yan X et al (2009) Preparation and characterization of polyaniline/indium (III) oxide (PANi/In2O3) nanocomposite thin film. In: 4th international symposium on advanced optical manufacturing and testing technologies: advanced optical manufacturing technologies. International Society for Optics and Photonics

    Google Scholar 

  • Yang T et al (2009) Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites. Biosens Bioelectron 24(7):2165–2170

    Article  CAS  Google Scholar 

  • Yang J, Wang X, Shi H (2012) An electrochemical DNA biosensor for highly sensitive detection of phosphinothricin acetyltransferase gene sequence based on polyaniline-(mesoporous nanozirconia)/poly-tyrosine film. Sensors Actuators B Chem 162(1):178–183

    Article  CAS  Google Scholar 

  • Yun J, Jeon S, Kim H-I (2013) Improvement of NO gas sensing properties of polyaniline/MWCNT composite by photocatalytic effect of TiO2. J Nanomater 2013:3

    Article  CAS  Google Scholar 

  • Zhang H-D et al (2014) High-sensitivity gas sensors based on arranged polyaniline/PMMA composite fibers. Sensors Actuators A Phys 219:123–127

    Article  CAS  Google Scholar 

  • Zhihua L et al (2016) Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites. Sensors Actuators B Chem 226:553–562

    Article  CAS  Google Scholar 

  • Zhong H et al (2011) In situ chemo-synthesized multi-wall carbon nanotube-conductive polyaniline nanocomposites: characterization and application for a glucose amperometric biosensor. Talanta 85(1):104–111

    Article  CAS  Google Scholar 

  • Zhu J et al (2015) Preparation of polyaniline–TiO2 nanotube composite for the development of electrochemical biosensors. Sensors Actuators B Chem 221:450–457

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to express their appreciations to Science and Engineering Research Board (DST) fast tract young scientist scheme (SB/FT/CS-122/2014) for providing Postdoctoral Fellowship to Mohammad Shahadat.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahadat, M., Oves, M., Shalla, A.H., Ahammad, S.Z., Wazed Ali, S., Sreekrishnan, T.R. (2020). Fabrication of Polyaniline Supported Nanocomposites and Their Sensing Application for Detection of Environmental Pollutants. In: Oves, M., Ansari, M., Zain Khan, M., Shahadat, M., M.I. Ismail, I. (eds) Modern Age Waste Water Problems . Springer, Cham. https://doi.org/10.1007/978-3-030-08283-3_6

Download citation

Publish with us

Policies and ethics