Skip to main content

Chitosan Based Nanocomposites as Efficient Adsorbents for Water Treatment

  • Chapter
  • First Online:
Modern Age Waste Water Problems

Abstract

Excessive growth and rapid development put a huge burden on the environment and the large fraction of water bodies getting polluted through industries. Though one third part of the earth contain water, but still there is a crises of water for drinking and other purposes. These water contaminants, contain many harmful and toxic metals, dyes, drugs, pesticides etc. Polluted water can be treated by numerous methods to make it fit for the drinking purpose. Chitosan being the most abundant biodegradable and cationic polymer can be effectively used for the treatment of wastewater for the removal of toxic and hazardous contaminants, heavy metals and other impurities present in water. Chitosan with characteristic functional groups such as amino and hydroxyl group can also be useful for the treatment of water as an adsorbent. Chitosan being the environmental friendly, cost effective and non toxic in nature is also applied for the purpose of treatment of water through adsorption, chelation, precipitation, ion exchange techniques etc. Nanoparticle doped with chitosan in the form of bionanocomposites has been a very successful tool for the removal of pollutants from the water. Wastewater contains different types of metal ions, toxic substance,and different pH i.e. alkaline as well as acidic nature. Chitosan in the acidic media is very helpful as the amino functional group can easily be protonated in acidic media to bind with the anionic part of the organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adewuyi S, Jacob JM, Olaleye O, Abdulraheem TO, Tayo JA, Oladoyinbo F (2016) Chitosan-bound pyridinedicarboxylate Ni(II) and Fe(III) complex biopolymer films as waste water decyanidation agents. Carbohydr Polym 151:1235–1239

    Article  CAS  Google Scholar 

  • Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091

    Article  CAS  Google Scholar 

  • Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667

    Article  Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:1–24

    Article  Google Scholar 

  • Assaad E, Azzouz A, Nistor D, Ursu AV, Sajin T, Miron DN (2007) Metal removal through synergic coagulation–flocculation using an optimised chitosan-montmorillonite system. Appl Clay Sci 37:258–274

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpaa A (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater – a short review. Adv Colloid Interface Sci 152(2009):26–38

    Article  CAS  Google Scholar 

  • Bingbing L, Zhou F, Huang K, Wang Y, Mei S, Zhou Y, Jing T (2017) Environmentally friendly chitosan/PEI-grafted magnetic gelatin for the highly effective removal of heavy metals from drinking water. Sci Rep 7:43082

    Article  Google Scholar 

  • Bratskaya SY, Avramenko VA, Sukhoverkhov SV, Schwarz S (2002) Flocculation of humic substances and their derivatives with chitosan. Colloid J 64:756–761

    Article  Google Scholar 

  • Chen X, Sun HL, Pan JH (2006) Decolorization of dyeing wastewater with use of chitosan materials. Ocean Sci J 41:221–226

    Article  Google Scholar 

  • Cheng WP, Chi FH, Yu RF, Lee YC (2005) Using chitosan as a coagulant in recovery of organic matters from the mash and lauter wastewater of brewery. J Polym Environ 13:383–388

    Article  CAS  Google Scholar 

  • Chiou MS, Kuo WS, Li HY (2003) Removal of reactive dye from waste water by adsorption using ECH cross-linked Chitosan beads as medium. J Hazard Mater A 38:2621–2631

    Google Scholar 

  • Chivrac F, Pollet E, Averous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng R 67:1–17

    Article  Google Scholar 

  • Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447

    Article  CAS  Google Scholar 

  • Dashairya L, Sharma M, Basu S, Saha P (2018) Enhanced dye degradation using hydrothermally synthesized nanostructured Sb2S3/rGO under visible light irradiation. J Alloys Compd 735:234–245

    Article  CAS  Google Scholar 

  • Dhanavel S, Manivannan N, Gupta VK, Narayanan V, Stephen A (2018) Preparation and characterization of cross-linked chitosan/palladium nanocomposites for catalytic and antibacterial activity. J Mol Liq 257:32–41

    Article  CAS  Google Scholar 

  • Divakaran R, Pillai VNS (2001) Flocculation of kaolinite suspensions in water by chitosan. Water Res 35:3904–3908

    Article  CAS  Google Scholar 

  • Duong HV, Chau L, Dang N, Vanterpool F, Sanchez MS, Lizundia E, Tran HT, Nguyen VL, Nguyen TD (2018) Biocompatible chitosan-functionalized upconverting nanocomposites. ACS Omega 3:86–95

    Article  CAS  Google Scholar 

  • Farzana M, Meenakshi H, Sankaran V (2015) Facile synthesis of Chitosan/ZnO composite for the photodegradation of Rhodamine B dye. J Chitin Chitosan Sci 3:21–31

    Article  Google Scholar 

  • Fenglian F, Wang Q (2011) Removal of heavy metal ions from wastewater. J Environ Mang 92:407–418

    Article  Google Scholar 

  • Gamage A, Shahidi F (2007) Use of chitosan for the removal of metal ion contaminants and proteins from water. Food Chem 104:989–996

    Article  CAS  Google Scholar 

  • Gerente C, Lee VKC, Le Cloirec P, McKay G (2007) Application of Chitosan for the removal of metals from wastewaters by adsorption – mechanisms and model review. Crit Rev Environ Sci Technol 37:41–127

    Article  CAS  Google Scholar 

  • Gogoi P, Ashim J, Rashmi T, Devi R, Das B, Maji TK (2016) A comparative study on sorption of arsenate ions from water by crosslinked chitosan and crosslinked chitosan/MMT nanocomposite. J Environ Chem Eng 4(4):4248–4257

    Article  CAS  Google Scholar 

  • Gokila S, Gomathi T, Sudha PN, Anil S (2017) Removal of the heavy metal ion chromiuim(VI) using Chitosan and Alginate nanocomposites. Int J Biol Macromol 104:1459–1468

    Article  CAS  Google Scholar 

  • Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74

    Article  CAS  Google Scholar 

  • Guibal E, Roussy J (2007) Coagulation and flocculation of dye-containing solutions using a biopolymer (chitosan). React Funct Polym 67:33–42

    Article  CAS  Google Scholar 

  • Gupta VK et al (2017) Degradation of azo dyes under different wavelengths of UV light with chitosan-SnO2 nanocomposites. J Mol Liq 232:423–430

    Article  CAS  Google Scholar 

  • Hadwiger LA, Kendra D, Fristensky BW, Wagoner W (2016) Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In: Chitin in nature and technology. Springer, Boston, pp 209–214

    Google Scholar 

  • Haritma C, Ruhi G (2016) Eco friendly chitosan: an efficient material for water purification. Pharma Innovation J 5(1):92–95

    Google Scholar 

  • Hosseinzadeh H, Ramin S (2018) Effective removal of copper from aqueous solutions by modified magnetic chitosan/graphene oxide nanocomposites. Int J Biol Macromol 113(1):859–868

    Article  CAS  Google Scholar 

  • Huang C, Chen Y (1996) Coagulation of colloidal particles in water by chitosan. J Chem Technol Biotechnol 66:227–232

    Article  CAS  Google Scholar 

  • Kim CY, Choi HM, Cho HT (1997) Effect of deacetylation on sorption of dyes and chromium on chitin. J Appl Polym Sci 63:725–736

    Article  CAS  Google Scholar 

  • Krajewska B (2005) Membrane-based processes performed with use of chitin/chitosan materials. Sep Purif Technol 41:305–312

    Article  CAS  Google Scholar 

  • Kumar R, Oves M, Almeelbi T, Al-Makishah NH, Barakat MA (2017) Hybrid chitosan/polyaniline-polypyrrole biomaterial for enhanced adsorption and antimicrobial activity. J Colloid Interface Sci 490:488–496

    Article  CAS  Google Scholar 

  • Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–206

    Article  CAS  Google Scholar 

  • Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682

    Article  CAS  Google Scholar 

  • Mahdavinia GR, Mosallanezhad A (2016) Facile and green rout to prepare magnetic and chitosan-crosslinked κ-carrageenan bionanocomposites for removal of methylene blue. J Water Pro Eng 10:143–155

    Article  Google Scholar 

  • Masheane M, Nthunya N, Malinga S, Nxumalo E, Barnard T, Mhlanga S (2016) Antimicrobial properties of chitosan-alumina/f-MWCNT nanocomposites. J Nanotechnol 2016:1–8

    Article  Google Scholar 

  • Miquel R, Souad A, Lara D, Javier G, Joan R, Jordi B (2007) Interaction of uranium with in situ anoxically generated magnetite on steel. J Hazard Mater 147:726–731

    Article  Google Scholar 

  • Mondal S (2008) Methods of dye removal from dye house effluent – an overview. Environ Eng Sci 25:383–396

    Article  CAS  Google Scholar 

  • Moussout H et al (2018) Performances of local chitosan and its nanocomposite 5%Bentonite/Chitosan in the removal of chromium ions Cr(VI) from wastewater. Int J Biol Macromol 108:1063–1073

    Article  CAS  Google Scholar 

  • Nafees A, Saima S, Ameer A, Suhail S, Mohammad ZK (2017) Novel bio-nanocomposite materials for enhanced biodegradability and photocatalytic activity. New J Chem 41:10198

    Article  Google Scholar 

  • Neeta P, Shukla SK, Singh NB (2017) Water purification by polymer nanocomposites: an overview. Nanocomposites 3(2):47–66

    Article  Google Scholar 

  • Nithya JK, Prabhu S, Jeganathan K (2014) Chitosan based nanocomposite materials as photocatalyst – a review. Mater Sci Forum 781:79–94

    Article  CAS  Google Scholar 

  • No HK, Lee K, Meyers SP (2000) Correlation between physical chemical characters binding capacity of Chitosan products. J Food Sci 65:1134–1137

    Article  CAS  Google Scholar 

  • Olivera S, Basavarajaiah H, Krishna M, Vijay V, Guna K, Gopalakrishna K, Kumar Y (2016) Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: a review. Carbohydr Polym 153:600–618

    Article  CAS  Google Scholar 

  • Ozer D, Ozer A (2004) The adsorption of copper (II) ions on to dehydrated wheat bran (DWB): determination of the equilibrium and thermodynamic parameters. Process Biochem 39:2183–2191

    Article  CAS  Google Scholar 

  • Portes E, Gardrat C, Castellan A, Coma V (2009) Environmentally friendly films based on chitosan and tetrahydrocurcuminoid derivatives exhibiting antibacterial and antioxidative properties. Carbohydr Polym 76:578–584

    Article  CAS  Google Scholar 

  • Qin C, Li H, Xiao Q, Liu Y, Zhu J, Du Y (2006) Watersolubility of chitosan and its antimicrobial activity. Carbohydr Polym 63:367–374

    Article  CAS  Google Scholar 

  • Qin Y, Cai L, Feng D, Shi B, Liu J, Zhang W, Shen Y (2007) Combined use of chitosan and alginate in the treatment of wastewater. J Appl Polym Sci 104(6):3581–3587

    Article  CAS  Google Scholar 

  • Rania EM, Alsabagh AM, Nasr SA, Zaki MM (2017) Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: antimicrobial characteristics. Int J Biol Macromol 97:264–269

    Article  Google Scholar 

  • Renault F, Sancey B, Badot PM, Crini G (2009) Chitosan for coagulation/flocculation processes – an eco-friendly approach. Eur Polym J 45:1337–1348

    Article  CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  • Rodrigues AC, Boroski M, Shimada NS, Garcia JC, Nozaki J, Hioka N (2008) Treatment of paper pulp mill wastewater by coagulation – flocculation followed by heterogenous photocatalysis. J Photochem Photobiol A Chem 194:1–10

    Article  CAS  Google Scholar 

  • Roussy J, Vooren VM, Guibal E (2004) Chitosan for the coagulation and flocculation of mineral colloids. J Dispers Sci Technol 25:663–677

    Article  CAS  Google Scholar 

  • Roussy J, Vooren VM, Dempsey BA, Guibal E (2005) Influence of chitosan characteristics on the coagulation and the flocculation of bentonite suspensions. Water Res 39:3247–3258

    Article  CAS  Google Scholar 

  • Saad AHA, Azzam A, El-Wakeel ST, Mostafa B, El-Latif MB (2018) Removal of toxic metal ions from wastewater using ZnO@Chitosan core-shell nanocomposite. Environ Nanotechnol Monit Manag 9:67–75

    Google Scholar 

  • Saha P, Datta S, Sanyal SK (2008) Study on the effect of different metals on soil liner medium. Indian Sci Cruiser 22:50–56

    Google Scholar 

  • Saito T, Isogai A (2005) Ion-exchange behavior and carboxylate groups in fibrous cellulose oxidized by TEMPO-mediated system. Carbohydr Polym 61:183–190

    Article  CAS  Google Scholar 

  • Saldias C et al (2018) In situ preparation of film and hydrogel bio-nanocomposites of chitosan/fluorescein-copper with catalytic activity. Carbohydr Polym 180:200–208

    Article  CAS  Google Scholar 

  • Seong HS, Kim JP, Ko SW (1999) Preparing chito-oligosaccharides as antimicrobial agents for cotton. Text Res J 69(7):483–488

    Article  CAS  Google Scholar 

  • Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10:37–51

    Article  CAS  Google Scholar 

  • Strand SP, Vandvik MS, Vårum KM, Ostgaard K (2001) Screening of chitosan and conditions for bacterial flocculation. Biomacromolecules 2:121–133

    Google Scholar 

  • Sultana S, Ahmad N, Faisal SM, Owais M, Sabir S (2007) IET Nanobiotechnol 2017:1–8

    Google Scholar 

  • Swami D, Buddhi D (2006) Removal of contaminants from industrial wastewater through various non-conventional technologies: a review. Int J Environ Pollut 27:324–346

    Article  CAS  Google Scholar 

  • Teimouri A et al (2016) Chitosan/Zeolite Y/Nano ZrO2 nanocomposite as an adsorbent for the removal of nitrate from the aqueous solution. Int J Biol Macromol 93:254–266

    Article  CAS  Google Scholar 

  • Tripathi S, Mehrotrap GK, Dutta PK (2011) Preparation and antimicrobial activity of chitosan-silver oxide nanocomposite film via solution casting method. Bull Mater Sci 34:29–35

    Article  CAS  Google Scholar 

  • Vanamudan A, Padmaja MS, Pamidimukkala S (2018) Nanostructured zirconium tungstate and its bionanocomposite with chitosan: wet peroxide photocatalytic degradation of dyes. J Taiwan Inst Chem Eng 85:74–82

    Article  CAS  Google Scholar 

  • Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives. Carbohydr Polym 55:77–93

    Article  CAS  Google Scholar 

  • Veera MB, Krishnaiah A, Jonathan LT, Edgar DS (2003) Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environ Sci Technol 37:4449–4456

    Article  Google Scholar 

  • Veera MB, Krishnaiah A, Ann JR, Edgar DS (2008a) Removal of copper (II) and nickel (II) ions from aqueous solutions by a composite chitosan biosorbent. Sep Sci Technol 43:1365–1381

    Article  Google Scholar 

  • Veera MB, Krishnaiah A, Jonathan LT, Edgar DS, Richard H (2008b) Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res 42:633–642

    Article  Google Scholar 

  • Wada S, Ichikawa H, Tatsumi K (1995) Removal of phenols and aromatic amines from wastewater by a combination treatment with tyrosinase and a coagulant. Biotechnol Bioeng 45:304–309

    Article  CAS  Google Scholar 

  • Wan MW, Kan CC, Lin CH, Buenda DR, Wu CH (2007) Adsorption of copper (II) by chitosan immobilized on sand. Chia-Nan Annu Bull 33:96–106

    Google Scholar 

  • Wang JP, Chen YZ, Ge XW, Yu HQ (2007) Optimization of coagulation– flocculation process for a paper-recycling wastewater treatment using response surface methodology. Colloids Surf A Physicochem Eng Aspects 302:204–210

    Article  CAS  Google Scholar 

  • Wu FC, Tseng RL, Juang RS (2001) Enhanced abilities of highly swollen chitosan beads for color removal and tyrosinase immobilization. J Hazard Mater B81:167

    Article  Google Scholar 

  • Wu ZB, Ni WM, Guan BH (2008) Application of chitosan as flocculant for coprecipitation of Mn(II) and suspended solids from dual-alkali FGD regenerating process. J Hazard Mater 152:757–764

    Article  CAS  Google Scholar 

  • Xie W, Xu P, Wang W, Liu Q (2002) Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohydr Polym 50:35–40

    Article  CAS  Google Scholar 

  • Zemmouria H, Drouiche M, Sayeh A, Lounici H, Mameri N (2013) Chitosan application for treatment of beni-amrane’s water Dam. Energy Procedia 36:558–564

    Article  Google Scholar 

  • Zheng C, Beach ES, Anastas PT (2011) Modification of chitosan films with environmentally benign reagents for increased water resistance. Taylor Francis 4:35–40

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to all those who have already worked in the field treatment of waste water using chitosan based nanocomposites and also thankful to those who have been working in this field. Authors acknowledge Department of Chemistry, Aligarh Muslim University, Aligarh for providing necessary facilities. SS also thanked UPCST for providing Young Scientist fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, N., Sultana, S., Khan, M.Z., Sabir, S. (2020). Chitosan Based Nanocomposites as Efficient Adsorbents for Water Treatment. In: Oves, M., Ansari, M., Zain Khan, M., Shahadat, M., M.I. Ismail, I. (eds) Modern Age Waste Water Problems . Springer, Cham. https://doi.org/10.1007/978-3-030-08283-3_4

Download citation

Publish with us

Policies and ethics