Skip to main content

Mathematical Modeling of the Evolution of Compact Astrophysical Gas Objects

  • Conference paper
  • First Online:
Smart Modeling for Engineering Systems (GCM50 2018)

Abstract

In the current study, the vortex structures that occur in one of the most common astrophysical objects such as massive stars and accretion disks are investigated using mathematical modeling methods. Modeling of convective processes with the formation of vortex structures in massive stars of various masses, rotating and being possessed in the self-gravitation conditions is carried out. Modeling uses a gas-dynamic model of an inviscid perfect gas. The numerical technique is based on the finite-difference approximation of the conservation laws for the additive characteristics of the environment for a finite volume. Direct calculation of gravitational forces is used by summing up the interaction between all the finite volumes in the area of integration. For the objects with different mass and rotation speed, visualized pictures of the vortex structure are given. Modeling of the processes of formation of large-scale vortex structures in accretionary stellar disks with different disk thickness is also carried out. Self-gravitation of the matter of a disk rotating in the field of the gravity of a compact central object is not taken into consideration. The numerical technique is based on the explicit, conservative, and monotone in the linear approximation Godunov-type Roe-Einfeldt-Osher scheme, which approximates with order no higher than the third the conservation laws of the characteristics of the environment. For the disks with different thicknesses, visualized pictures of the vortex structure are given. Evolutionary calculations are carried out on the basis of parallel algorithms implemented on the computational complex of the cluster architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sawada, K., Matsuda, T., Hachisu, I.: Spiral shocks on a Roche lobe overflow in a semi-detached binary system. Mon. Not. Roy. Astron. Soc. 219, 75–88 (1986)

    Article  Google Scholar 

  2. Velikhov, Y.P., Lugovsky, A.Y., Mukhin, S.I., Popov, Y.P., Chechetkin, V.M.: The impact of large-scale turbulence on the redistribution of angular momentum in stellar accretion disks. Astron. Rep. 51(2), 154–160 (2007)

    Article  Google Scholar 

  3. Lugovsky, A.Y., Mukhin, S.I., Popov, Y.P., Chechetkin, V.M.: The development of large-scale instability in stellar accretion disks and its influence on the redistribution of angular momentum. Astron. Rep. 52(10), 811–814 (2008)

    Article  Google Scholar 

  4. Lugovskii, A.Y., Chechetkin, V.M.: The development of large-scale instability in Keplerian stellar accretion disks. Astron. Rep. 56(2), 96–103 (2012)

    Article  Google Scholar 

  5. Pudritz, R.E., Norman, C.A.: Bipolar hydromagnetic winds from disks around protostellar objects. Astrophysical J. 301, 571–586 (1986)

    Article  Google Scholar 

  6. Velikhov, E.P., Sychugov, K.R., Chechetkin, V.M., Lugovskii, AYu., Koldoba, A.V.: Magneto-rotational instability in the accreting envelope of a protostar and the formation of the large-scale magnetic field. Astron. Rep. 56(2), 84–95 (2012)

    Article  Google Scholar 

  7. Chakrabarti, S., Laughlin, G., Shu, F.H.: Branch, Spur, and Feather Formation in Spiral Galaxies. Astrophys. J. 596(1), 220–239 (2003)

    Article  Google Scholar 

  8. Lugovskii, A.Y., Filistov, E.A.: Numerical modeling of transient structures in the disks of spiral galaxies. Astron. Rep. 58(2), 48–62 (2014)

    Article  Google Scholar 

  9. Mingalev, I.V., Rodin, A.V., Orlov, K.G.: Numerical simulations of the global circulation of the atmosphere of Venus: Effects of surface relief and solar radiation heating. Sol. Syst. Res. 49(1), 24–42 (2015)

    Article  Google Scholar 

  10. Couch, S.M., Ott, C.D.: The role of turbulence in neutrino-driven core-collapse supernova explosions. Astroph. J. 799, 5–15 (2015)

    Article  Google Scholar 

  11. Wongwathanarat, A., Muller, E., Janka, H.-T.: Three-dimensional simulations of core-collapse supernovae: from shock revival to shock breakout. Astron. Astrophycs. 577(A48), 1–20 (2015)

    Google Scholar 

  12. Mingalev, I.V., Astaf’eva, N.M., Orlov, K.G., Chechetkin, V.M., Mingalev, V.S., Mingalev, O.V.: Numerical simulation of formation of cyclone vortex flows in the intratropical zone of convergence and their early detection. Cosm. Res. 50(3), 233–248 (2012)

    Article  Google Scholar 

  13. Belotserkovskii, O.M., Mingalev, I.V., Mingalev, V.S., Mingalev, O.V., Oparin, A.M., Chechetkin, V.M.: Formation of large-scale vortices in shear flows of the lower atmosphere of the earth in the region of tropical latitudes. Cosm. Res. 47(6), 466–479 (2009)

    Article  Google Scholar 

  14. Schwab, J., Martínez-Rodríguez, H., Piro, A.L., Badenes, C.: Exploring the carbon simmering phase: Reaction rates, mixing, and the convective Urca process. Astrophys. J. 851(2), 105 (2017)

    Article  Google Scholar 

  15. Melson, T., Heger, A., Janka, H.T.: Supernova simulations from a 3D progenitor model—Impact of perturbations and evolution of explosion properties. Mon. Not. R. Astron. Soc. (MNRAS) 472(1), 491–513 (2017)

    Article  Google Scholar 

  16. Dolence, J.C., Burrows, A., Zhang, W.: Two-dimensional core-collapse supernova models with multi-dimensional transport. Astroph. J. 800, 10 (2015)

    Article  Google Scholar 

  17. Lugovsky, A.Y., Popov, Y.P.: Roe–Einfeldt–Osher scheme as applied to the mathematical simulation of accretion disks on parallel computers. Comput. Math. Math. Phys. 55(8), 1407–1418 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Babakov, A.V., Popov, M.V., Chechetkin, V.M.: Mathematical Simulation of a Massive Star Evolution Based on a Gasdynamical Model. Math. Models Comput. Simul. 10(3), 357–362 (2018)

    Article  MathSciNet  Google Scholar 

  19. Belotserkovskii, O.M., Severinov, L.I. (1973) The conservative “flow” method and the calculation of the flow of a viscous heat-conducting gas past a body of finite size. U.S.S.R. Comput. Math. Math. Phys. 13(2), 141–156

    Article  Google Scholar 

  20. Belotserkovskii, O.M., Babakov, A.V.: The simulation of the coherent vortex structures in the turbulent flows. Adv. Mech. Pol. 13(3–4), 135–169 (1990)

    Google Scholar 

  21. Babakov, A.V.: Numerical simulation of spatially unsteady jets of compressible gas on a multiprocessor computer system. U.S.S.R. Comput. Math. Math. Phys. 51(2), 235–244 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Babakov, A.V., Novikov, P.A.: Numerical simulation of unsteady vortex structures in near wake of poorly streamlined bodies on multiprocessor computer system. U.S.S.R. Comput. Math. Math. Phys. 51(2), 245–250 (2011)

    Article  MATH  Google Scholar 

  23. Babakov, A.V.: Program package FLUX for the simulation of fundamental and applied problems of fluid dynamics. U.S.S.R. Comput. Math. Math. Phys. 56(6), 1151–1161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Belotserkovskii, O.M., Babakov, A.V., Beloshitskii, A.V., Gaidaenko, V.I., Dyadkin, A.A.: Numerical simulation of some problems of recovery capsule aerodynamics. Math. Models Comput. Simul. 8(5), 568–576 (2016)

    Article  Google Scholar 

  25. Aksenov, A.G.: Numerical solution of the Poisson equation for the three-dimensional modeling of stellar evolution. Astron. Lett. 25, 185–190 (1999)

    Google Scholar 

  26. Aksenov, A.G., Blinnikov, S.I.: A Newton iteration method for obtaining equilibria of rapidly rotating stars. Astron. Astrophys. 290, 674–681 (1994)

    Google Scholar 

  27. Osher, S., Solomon, F.: Upwind difference schemes for hyperbolic systems of conservations laws. Math. Comput. 38, 339–374 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chakravarthy, S., Osher, S.: A new class of high accuracy TVD schemes for hyperbolic conservation laws. AIAA Papers 85(0363), 1–11 (1985)

    Google Scholar 

  29. Einfeldt, B.: On Godunov_type methods for gas dynamics. SIAM J. Numer. Anal. 25, 294–318 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kuznetsov, O.A.: Preprint No. 43. IPM RAN (Keldysh Inst. of Applied Mathematics of Russian Academy of Sciences), Moscow (1998)

    Google Scholar 

  31. Abakumov, M.V.: Construction of flux difference schemes and their application to the computation of gas flows in accretion disks. MAKS Press, Moscow (2012)

    Google Scholar 

  32. Abakumov, M.V., Mukhin, S.I., Popov, Y.P., Chechetkin, V.M.: Studies of equilibrium configurations for a gaseous cloud near a gravitating center. Astron. Rep. 40(3), 366–377 (1996)

    MATH  Google Scholar 

  33. Abakumov, M.V., Mukhin, S.I., Popov, Y.P., Chechetkin, V.M.: Comparison between two and three dimensional modeling of the structure of an accretion disk in a binary system. Astron. Rep. 47(1), 11–19 (2003)

    Article  Google Scholar 

  34. Belotserkovskii, O.M., Oparin, A.M.: Numerical experiment in turbulence: from order to chaos. Nauka, Moscow (2001)

    MATH  Google Scholar 

  35. Belotserkovskii, O.M., Chechetkin, V.M., Fortova, S.V., Oparin, A.M., Popov, Y.P., Lugovsky, A.Y., Mukhin, S.I.: The turbulence in free shear flows and in accretion discs. Astron. Astrophys. Trans. 25, 419–434 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A.G. Aksenov for helpful discussions of the setting of the initial field for the modeling of rotating massive stellar objects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Babakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Babakov, A.V., Lugovsky, A.Y., Chechetkin, V.M. (2019). Mathematical Modeling of the Evolution of Compact Astrophysical Gas Objects. In: Petrov, I., Favorskaya, A., Favorskaya, M., Simakov, S., Jain, L. (eds) Smart Modeling for Engineering Systems. GCM50 2018. Smart Innovation, Systems and Technologies, vol 133. Springer, Cham. https://doi.org/10.1007/978-3-030-06228-6_18

Download citation

Publish with us

Policies and ethics