Skip to main content

The Usage of Grid-Characteristic Method in Seismic Migration Problems

  • Conference paper
  • First Online:
Smart Modeling for Engineering Systems (GCM50 2018)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 133))

Abstract

This work is devoted to the numerical solution of the inverse problem of seismic survey process – migration. Oil and gas deposits has contrast subsurface boundaries and may be identified with this process. The algorithm for acoustic direct and inverse problem solution is described. The Born approximation allows to use different Green’s functions for the background model. Numerically the precision of algorithm for different input data is estimated. Migration images are compared for acoustic and elastic approximation. The better slope reproducing is identified in elastic case. Some assumptions about obtained numerical artefacts are done. The method for the elastic migration of seismic data in heterogeneous fractured media is described. The quality of two different processing chains is compared. Possible directions for the extension of this approach to the full-wave 3D simulation are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagedoorn, J.G.: A process of seismic reflection interpretation. Geophys. Prosp. 2(2), 85–127 (1954)

    Article  Google Scholar 

  2. Claerbout, J.F.: Coarse grid calculations of wave in inhomogeneous media with application to delineation of complicated seismic structure. Geophysics 35(3), 407–418 (1970)

    Article  Google Scholar 

  3. Claerbout, J.F.: Earth Soundings Analysis: Processing Versus Inversion. Stanford University (2004)

    Google Scholar 

  4. Claerbout, J.F., Guitton, A.: Ricker-compliant deconvolution. Geophys. Prosp. 63(3), 615–625 (2014)

    Article  Google Scholar 

  5. Numerical and physical modeling of diffraction. In: Klem-Musatov, K., Hoeber, H.C., Moser, T.J., Pelissier, M.A. (eds.) Seismic Diffraction, SEG Geophysics Reprint Series 30 (2016)

    Google Scholar 

  6. Schneider, W.A.: Analyzing operators of 3-D imaging software with impulse responses. Geophysics 64(4), 1079–1092 (1999)

    Article  Google Scholar 

  7. Stolt, R.H.: Migration by Fourier transform. Geophysics 43(1), 23–48 (1978)

    Article  Google Scholar 

  8. Weglein, A.B., Araújo, F.V., Carvalho, P.M., Stolt, R.H., Matson, K.H., Coates, R.T., Corrigan, D., Foster, D.J., Shaw, S.A., Haiyan Zhang, H.: Inverse scattering series and seismic exploration. Inverse Prob. 19, R27–R83 (2003)

    Article  MathSciNet  Google Scholar 

  9. Bleistein, N., Cohen, J.K.: Stacking of narrow aperture common shot inversions. SIAM J. Appl. Math. 50(2), 569–594 (1990)

    Article  MathSciNet  Google Scholar 

  10. Beydoun W., Tarantola A.: First born and Rytov approximations. Modeling and inversion conditions in a canonical example. J. Acoust. Soc. Am. 83(3), 1045–1055 (1988)

    Article  Google Scholar 

  11. Oboznenko, I.L.: Modified Born approximation for solving scattering problems. J. Acoust. Soc. Am. 113(4), article no 2284 (2003)

    Article  Google Scholar 

  12. McMechan, G.: Determination of source parameters by wavefield extrapolation. Geophys. J. Int. 71(3), 613–628 (1982)

    Article  Google Scholar 

  13. McMechan, G.: Migration by extrapolation of time-dependent bound-ary values. Geophys. Prosp. 31(3), 413–420 (1983)

    Article  Google Scholar 

  14. Baysal, E., Kosloff, D., Sherwood, J.: Reverse time migration. Geophysics 48(11), 1514–1524 (1983)

    Article  Google Scholar 

  15. Gray, S.H.: Frequency-selective design of the Kirchhoff migration operator. Geophys. Prosp. 40(5), 565–571 (1992)

    Article  Google Scholar 

  16. Moser, T.J.: Review of ray-Born forward modeling for migration and diffraction analysis. Stud. Geophys. Geod. 56(2), 411–432 (2012)

    Article  Google Scholar 

  17. Thierry, P., Operto, S., Lambare, G.: Fast 2-D ray + Bornmigration/inversion in complex media. Geophysics 64(1), 162–181 (1999)

    Article  Google Scholar 

  18. Sun, R., McMechan, G., Hsiao, H.H., Chow, J.: Separating P- and S-waves in prestack elastic seismograms using divergence and curl. Geophysics 69(1), 286–297 (2004)

    Article  Google Scholar 

  19. Amundsen, L., Reitan, A.: Decomposition of multicomponent sea-floor data into upgoing and downgoing P- and S-waves. Geophysics 60(2), 563–572 (1995)

    Article  Google Scholar 

  20. Amano, H.: An analytical solution to separate P-waves and S-waves in VSP wavefields. Geophysics 60(2), 955–967 (1995)

    Article  Google Scholar 

  21. Sun, R., McMechan, G.A.: Scalar reverse-time depth migration of prestack elastic seismic data. Geophysics 66(5), 1519–1527 (2001)

    Article  Google Scholar 

  22. Whitmore, N.D., Marfurt, K.J.: Method for depth imaging multicomponent seismic data. U.S. Patent 4 766 574 (1988)

    Google Scholar 

  23. Jiao, K., Huang, W., Vigh, D., Kapoor, J., Coates, R., Starr, E.W., Cheng, X.: Elastic migration for improving salt and subsalt imaging and inversion. SEG Tech. Prog. Expanded Abstr. 2012, 1–5 (2012)

    Google Scholar 

  24. Kuo, J.T., Dai, T.-F.: Kirchhoff elastic wave migration for the case of noncoincident source and receiver. Geophysics 49(8), 1223–1238 (1984)

    Article  Google Scholar 

  25. Keho, T.H., Wu, R.S.: Elastic Kirchhoff migration for vertical seismic profiles. In: 67th Ann. Int. Mtg., Soc. Expl. Geophys., Expanded Abstracts, pp. 774–776 (1987)

    Google Scholar 

  26. Hokstad, K.: Multicomponent Kirchhoff migration. Geophysics 65(3), 861–873 (2000)

    Article  Google Scholar 

  27. Zhe, J., Greenhalgh, S.A.: Prestack multicomponent migration. Geophysics 62(2), 598–613 (1997)

    Article  Google Scholar 

  28. Gherasim, M.: 3-D VSP elastic Kirchhoff pre-stack depth migration. Vinton Dome, Louisiana (2005)

    Google Scholar 

  29. Luo, Y., Tromp, J., Denel, B., Calandra, H.: 3D coupled acoustic-elastic migration with topography and bathymetry based on spectral-element and adjoint methods. Geophysics 78(4), S193–S202 (2013)

    Article  Google Scholar 

  30. Lu, R., Yan, J., Traynin, P., Anderson, J.E., Dickens, T.: Elastic RTM: Anisotropic wave-mode separation and converted-wave polarization correction. SEG Technical Program Expanded Abstracts 2010, 3171–3175 (2010)

    Article  Google Scholar 

  31. Xie, X., Wu, R.: Multicomponent prestack depth migration using the elastic screen method. Geophysics 70(1), S30–S37 (2005)

    Article  Google Scholar 

  32. Yan, J., Sava, P.: Isotropic angle-domain elastic reverse-time migration. Geophysics 73(6), S229–S239 (2008)

    Article  Google Scholar 

  33. Beydoun, W.B., Mendes, M.: Elastic ray-Born L2-migration/inversion. Geophys. J. Int. 97(1), 151–160 (1989)

    Article  Google Scholar 

  34. Beylkin, G., Burridge, R.: Linearized inverse scattering problems in acoustics and elasticity. Wave Motion 12(1), 15–52 (1990)

    Article  MathSciNet  Google Scholar 

  35. Eaton, D.W.S., Stewart, R.R.: 2-1/2 D elastic ray-Born migration/inversion theory for transversely isotropic media. CREWES Project Research Report 2, 361–377 (1990)

    Google Scholar 

  36. Bansal, R., Sen, M.K.: Ray-Born inversion for fracture parameters. Geophys. J. Int. 180(3), 1274–1288 (2010)

    Article  Google Scholar 

  37. Danilin, A.N.: The extraction of diffractors in complex acoustic media on the basis of the method CSP-RTD. Bulletin of the Baltic Federal University. I. Kant, vol. 4, 143–147 (2015) (In Russian)

    Google Scholar 

  38. Voynov, O.Y., Golubev, V.I., Zhdanov, M.S., Petrov, I.B.: Migration of elastic wavefield using adjoint operator and born approximation. In: Favorskaya, A.V., Petrov, I.B. (eds) Innovations in Wave Processes Modelling and Decision Making: Grid-Characteristic Method and Applications, SIST vol. 90, pp. 219–240 (2018)

    Chapter  Google Scholar 

  39. Favorskaya, A.V., Golubev, V.I.: About applying Rayleigh formula based on the Kirchhoff integral equations for the seismic exploration problems. Computer Research and Modeling 9(5), 761–771 (2017)

    Article  Google Scholar 

  40. Zhdanov, M.S.: Geophysical Inverse Theory and Regularization Problems. Methods in Geochemistry and Geophysics, 36, Elsevier (2002)

    Google Scholar 

  41. Favorskaya, A.V., Khokhlov, N.I., Golubev, V.I., Ekimenko, A.V., Pavlovskiy, Y.V., Khromova, I.Y., Petrov, I.B.: Wave Processes Modelling in Geophysics. In: Favorskaya, A.V., Petrov, I.B. (eds) Innovations in Wave Processes Modelling and Decision Making: Grid-Characteristic Method and Applications, SIST vol. 90, pp. 187–218 (2018)

    Chapter  Google Scholar 

  42. Golubev, V.I., Petrov, I.B., Khokhlov, N.I.: Simulation of seismic processes inside the planet using the hybrid grid-characteristic method. Mathematical Models and Computer Simulations 7(5), 439–445 (2015)

    Article  MathSciNet  Google Scholar 

  43. Golubev, V.I., Khokhlov, N.I.: Estimation of anisotropy of seismic response from fractured geological objects. Computer Research and Modeling 10(2), 231–240 (2018)

    Article  Google Scholar 

  44. Golubev, V.I., Gilyazutdinov, R.I., Petrov, I.B., Khokhlov, N.I., Vasyukov, A.V.: Simulation of dynamic processes in three-dimensional layered fractured media with the use of the grid-characteristic numerical method. J. Applied Mechanics and Technical Physics 58(3), 539–545 (2017)

    Article  MathSciNet  Google Scholar 

  45. Golubev, V.I., Voinov, O.Y., Zhuravlev, Y.I.: On seismic imaging of fractured geological media. Doklady Mathematics 96(2), 514–516 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research and by the Foundation “National Intellectual Development” for supporting undergraduate and graduate students and young scientists, project no. 17-37-80004_mol_ev_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily I. Golubev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Golubev, V.I. (2019). The Usage of Grid-Characteristic Method in Seismic Migration Problems. In: Petrov, I., Favorskaya, A., Favorskaya, M., Simakov, S., Jain, L. (eds) Smart Modeling for Engineering Systems. GCM50 2018. Smart Innovation, Systems and Technologies, vol 133. Springer, Cham. https://doi.org/10.1007/978-3-030-06228-6_13

Download citation

Publish with us

Policies and ethics