Skip to main content

Development and Applications of Computational Methods

  • Conference paper
  • First Online:

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 133))

Abstract

The chapter presents a brief description of chapters that contribute to the development and applications of computational methods in different areas, i.e. deformable solid bodies, seismic stability, seismic prospecting, migration, elastic and acoustic waves investigation, gas dynamics, astrophysics, aerodynamics, fluid dynamics, turbulent flows, hypersonic flows, detonation waves, composite materials, fracture mechanics, melting of metals, mathematical economics, medicine and biology. Computational methods for solving the problems of deformable solid bodies, gas and hydro dynamics, and medicine are considered in more detail. The third, the fourth and the fifth parts of the book are devoted to these three topics. Computational methods for solving the problems in the rest of the scientific fields are presented in the second part of the book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Magomedov, K.M., Kholodov, A.S.: The construction of difference schemes for hyperbolic equations based on characteristic relations. USSR Comput. Math. Math. Phy. 9(2), 158–176 (1969)

    Article  Google Scholar 

  2. Tolstykh, A.I.: High accuracy non-centered compact difference schemes for fluid dynamics applications. World Scientific, Singapore (1994)

    Book  Google Scholar 

  3. Golubev, V.I., Petrov, I.B., Khokhlov, N.I.: Compact grid-characteristic schemes of higher orders of accuracy for a 3D linear transport equation. Math. Models Comput. Simul. 8(5), 577–584 (2016)

    Article  MathSciNet  Google Scholar 

  4. Khokhlov, N., Ivanov, A., Zhdanov, M., Petrov, I., Ryabinkin, E.: Applying OpenCL technology for modelling seismic processes using grid-characteristic methods. In: International Conference on Distributed Computer and Communication Networks (DCCN 2016), pp. 577–588. Springer, Cham (2016)

    Google Scholar 

  5. Maksimova, A.G., Lazareva, G.G., Arakcheev, A.S.: Computer calculation of heating of various geometry of cracks formed under pulsed heat load. In: Bulletin of CC: Computer Science 41, NCC Publisher, Novosibirsk (2018)

    Google Scholar 

  6. Klemashev, N., Shananin, A.: Inverse problems of demand analysis and their applications to computation of positively-homogeneous Konus-Divisia indices and forecasting. J. Inverse Ill-Posed Probl 24(4), 367–391 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Laitinen, E., Lapin, A., Lapin, S.: On the iterative solution of finite-dimensional inclusions with applications to optimal control problems. Comp. Methods Appl. Math. 10(3), 283–301 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Burago, N.G., Nikitin, I.S., Yakushev, V.L.: Hybrid numerical method for unsteady problems of continuum mechanics using arbitrary moving adaptive overlap grids. Comput. Math. Math. Phys. 56(6), 1065–1074 (2016)

    Article  MathSciNet  Google Scholar 

  9. Beklemysheva, K.A., Ermakov, A.S., Petrov, I.B., Vasyukov, A.V.: Numerical simulation of the failure of composite materials by using the grid-characteristic method. Math. Models Comput. Simul. 5(8), 557–567 (2016)

    Article  Google Scholar 

  10. Favorskaya, A.V., Zhdanov, M.S., Khokhlov, N.I., Petrov, I.B.: Modelling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid-characteristic method. Geophys. Prospect. 66(8), 1485–1502 (2018)

    Article  Google Scholar 

  11. Biryukov, V.A., Muratov, M.V., Petrov, I.B., Sannikov, A.V., Favorskaya, A.V.: Application of the grid-characteristic method on unstructured tetrahedral meshes to the solution of direct problems in seismic exploration of fractured layers. Comput. Math. Math. Phy. 55(10), 1733–1742 (2015)

    Article  MathSciNet  Google Scholar 

  12. Stognii, P., Petrov, D., Khokhlov, N., Favorskaya, A.: Numerical modeling of influence of ice formations under seismic impacts based on grid-characteristic method. Procedia Comput. Sci. 112, 1497–1505 (2017)

    Article  Google Scholar 

  13. Golubev, V.I., Voinov, O.Y., Zhuravlev, Y.I.: On seismic imaging of fractured geological media. Doklady Math. 96(2), 514–516 (2017)

    Article  MathSciNet  Google Scholar 

  14. Golubev, V.I., Voinov, O.Y., Petrov, I.B.: Seismic imaging of fractured elastic media on the basis of the grid-characteristic method. Comput. Math. Math. Phy. 58(8), 1309–1315 (2018)

    Article  MathSciNet  Google Scholar 

  15. Pathak, R., Khare, R.K.: Seismic response prediction of reinforced concrete single barrel shell structures by nonlinear static analysis. Indian Concr. J. 91(10), 61–68 (2017)

    Google Scholar 

  16. Astanin, A.V., Dashkevich, A.D., Petrov, I.B., Petrov, M.N., Utyuzhnikov, S.V., Khokhlov, N.I.: Modeling the influence of the Chelyabinsk meteorite’s bow shock wave on the Earth’s surface. Math. Models Comput. Simul. 9(2), 133–141 (2017)

    Article  Google Scholar 

  17. Belotserkovskii, O.M., Babakov, A.V., Beloshitskii, A.V., Gaidaenko, V.I., Dyadkin, A.A.: Numerical simulation of some problems of recovery capsule aerodynamics. Math. Models Comput. Simul. 8(5), 568–576 (2016)

    Article  Google Scholar 

  18. Bychkov, I.M., Vyshinsky, V.V., Nosachev, L.V.: Investigation of the flow pattern in a gas-jet Hartmann resonator. Tech. Phys. 54(8), 1110–1115 (2009)

    Article  Google Scholar 

  19. Titarev, V.A., Shakhov, E.M.: Unsteady rarefied gas flow with Shock wave in a channel. Fluid Dyn. 53(1), 143–151 (2018)

    Article  MathSciNet  Google Scholar 

  20. Shaydurov, V., Shchepanovskaya, G., Yakubovich, M.: Numerical simulation of supersonic flows in a channel. Russian J. Numer. Anal. Math. Modell. 27(6), 585–602 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Shevelev, YuD, Syzranova, N.G., Kustova, E.V., Nagnibeda, E.A.: Numerical simulation of hypersonic flows around space vehicles descending in the Martian atmosphere. Math. Models Comput. Simul. 3(2), 205–224 (2011)

    Article  Google Scholar 

  22. Utyuzhnikov, S.V.: Some new approaches to building and implementation of wall-functions for modeling of near-wall turbulent flows. Comput. Fluids 34(7), 771–784 (2005)

    Article  Google Scholar 

  23. Belotserkovskii, O.M., Chechetkin, V.M., Fortova, S.V., Oparin, A.M., Popov, YuP, Lugovsky, AYu., Mukhin, S.I.: The turbulence in free shear flows and in accretion discs. Astron. Astrophys. Trans. 25(5–6), 419–434 (2006)

    Article  Google Scholar 

  24. Maksimov, F.A., Ostapenko, N.A., Zubin, M.A.: Conical flows near V-shaped wings with shock waves attached on leading edges. In: Knight, D., Lipatov, I., Reijasse, Ph. (eds.) Progress in flight physics. vol. 7, pp. 453–474 (2015)

    Google Scholar 

  25. Lopato, A.I., Utkin, P.S.: Toward second-order algorithm for the pulsating detonation wave modeling in the shock-attached frame. Combust. Sci. Technol. 188(11–12), 1844–1856 (2016)

    Article  Google Scholar 

  26. Shestopaloff, Y.K.: Method for finding metabolic properties based on the general growth law. Liver examples. A General framework for biological modeling. PLoS ONE 9(6): e99836. https://doi.org/10.1371/journal.pone.0099836 (2014)

    Article  Google Scholar 

  27. Danilov, A.A., Pryamonosov, R.P., Yurova, A.S.: Image segmentation for cardiovascular biomedical applications at different scales. Computation 4(3) article no. 35 (2016)

    Article  Google Scholar 

  28. Beklemysheva, K.A., Danilov, A.A., Petrov, I.B., Salamatova, VYu., Vassilevski, YuV, Vasyukov, A.V.: Virtual blunt injury of human thorax: age-dependent response of vascular system. RJNAMM 5(30), 259–268 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Kopylov, FYu., Bykova, A.A., Shchekochikhin, DYu., El Manaa, KhE, Dzyundzya, A.N., Vasilevsky, YuV, Simakov, S.S.: Asymptomatic atherosclerosis of the brachiocephalic arteries: Current approaches to diagnosis and treatment. Ter. Arkh. 89(4), 95–100 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena V. Favorskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrov, I.B., Favorskaya, A.V., Favorskaya, M.N., Simakov, S.S., Jain, L.C. (2019). Development and Applications of Computational Methods. In: Petrov, I., Favorskaya, A., Favorskaya, M., Simakov, S., Jain, L. (eds) Smart Modeling for Engineering Systems. GCM50 2018. Smart Innovation, Systems and Technologies, vol 133. Springer, Cham. https://doi.org/10.1007/978-3-030-06228-6_1

Download citation

Publish with us

Policies and ethics