Skip to main content

The Influence of Boron Dopant on the Structural and Mechanical Properties of Silicon: First Principles Study

  • Conference paper
  • First Online:
Energy Technology 2019

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Boron (B) is usually used to produce p-type silicon to form the base layer in wafer-based silicon solar cells . The main objective of this work is to investigate the influence of B doping on the structural and mechanical properties of silicon . Using CASTEP program, which uses the density functional theory (DFT), with a plane wave basis, the structural, electronic, and mechanical properties of pure Si and the solid solution Si1−xBx (0.0001 ≤ x ≤ 0.05) were studied. The structure, density of states, band structure, and elastic properties were computed. It is found that as B concentration increases, the lattice constant increases, Bulk modulus (B), Shear modulus (G), and Young modulus (E) decreases. The ratio G/B decreases and Poisson’s ratio (ν) increases. The decrease of G/B and increase of ν mean that brittleness of Si decreases by increasing B concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujimoto Y, Koretsune T, Saito S, Miyake T, Oshiyama A (2008) A new crystalline phase of four-fold coordinated silicon and germanium. New J Phys 10:083001

    Article  Google Scholar 

  2. Auslender M, Hava S (2017) Single-crystal silicon: electrical and optical properties. In: Capper P, Kasap S (eds) Springer handbook of electronic and photonic materials. Springer Handbooks. Springer, Cham

    Google Scholar 

  3. Pi Xiaodong (2012) Doping silicon nanocrystals with boron and phosphorus. J Nanomater 2012:912903

    Article  Google Scholar 

  4. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Mater 14:2717–2744

    Article  CAS  Google Scholar 

  5. Zhu W, Xiao H (2008) Ab initio study of electronic structure and optical properties of heavy-metal azides: TlN3, AgN3, and CuN3. J Comput Chem 29:176–184

    Article  CAS  Google Scholar 

  6. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  7. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  8. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895

    Article  CAS  Google Scholar 

  9. Bellaiche L, Vanderbilt D (2000) Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys Rev B. 61(12):7877–7882

    Article  CAS  Google Scholar 

  10. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B. 13(12):5188–5192

    Article  Google Scholar 

  11. Newman RC (1982) Defects in silicon. Rep Prog Phys 45:1163–1210

    Article  Google Scholar 

  12. Wortman JJ, Evans RA (1965) Youngs’ modulus, shear modulus and Poisson’s ratio in silicon and germanium. J Appl Phys 36:153–156

    Article  CAS  Google Scholar 

  13. Prikhodko M, Miao MS, Lambrecht WRL (2002) Pressure dependence of sound velocities in 3C-SiC and their relation to the high-pressure phase transition. Phys Rev B 66:125201

    Article  Google Scholar 

  14. Gu JB, Wang CJ, Cheng Y, Zhang L, CaiL C, Ji GF (2015) Structural, elastic, thermodynamic, electronic properties and phase transition in half-Heusler alloy NiVSb at high pressures. Comput Mater Sci 96:72–80

    Article  CAS  Google Scholar 

  15. Mayer B, Anton H, Bott E, Methfessel M, Sticht J, Harris J, Schmidt PC (2003) Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Intermet. 11:23–32

    Article  CAS  Google Scholar 

  16. Evecen M, Ciftci YO (2017) First-principles study on the structural, elastic, electronic and vibrational properties of scandium based intermetalic compounds (ScX, X = Co, Rh and Ir) under pressure. J Nanoelectron Optoelectron 12:100–108

    Article  CAS  Google Scholar 

  17. Ding X, Ko WH, Mansour JM (1990) Residual stress and mechanical properties of Boron-doped p +-Silicon Films. Sens Actuators A21–A23:866–871

    Article  CAS  Google Scholar 

  18. Pugh SF (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843

    Article  CAS  Google Scholar 

  19. Fatima B, Chouhan SS, Acharya N, Sanyal SP (2014) Theoretical prediction of the electronic structure, bonding behavior and elastic moduli of scandium intermetallics. Internet 53:129–139

    CAS  Google Scholar 

  20. Fu HZ, Li DH, Peng F, Gao T, Cheng X (2008) Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures. Comput Mater Sci 44:774–778

    Article  CAS  Google Scholar 

  21. George A (1997) Elastic constants and moduli of diamond cubic Si. In: Hull R (ed), Properties of crystalline silicon 20, EMIS Data reviews, INSPEC, IEE, London, pp 98–103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadia Ikhmayies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ikhmayies, S., Çiftci, Y.Ö. (2019). The Influence of Boron Dopant on the Structural and Mechanical Properties of Silicon: First Principles Study. In: Wang, T., et al. Energy Technology 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-06209-5_20

Download citation

Publish with us

Policies and ethics