Skip to main content

Galerkin Methods

  • Chapter
  • First Online:
Error Estimates for Advanced Galerkin Methods

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 88))

Abstract

Having derived in the previous chapter various boundary value problems, including the finite and linearized hyperelasticity problems for both compressible and (nearly) incompressible materials, a reasonable question is how these problems can be solved. For most cases in engineering practice, the problems, including their geometry, are too complex for the feasible derivation of an exact analytical solution even though such a solution exists. We are therefore forced to employ numerical methods to obtain, at least, approximate solutions to the boundary value problems stated in the previous chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the literature, the Galerkin method is also referred to as the Rayleigh-Ritz-Galerkin or the Ritz-Galerkin method to honor the works of John William Strutt, 3rd Baron Rayleigh (1842–1919) and Walther Ritz (1878–1909) that serve as a basis for the Galerkin method.

  2. 2.

    The reader is reminded that both \({\mathcal T}\) and \({\mathcal V}\) were already introduced in Sect. 3.1.3.

  3. 3.

    The error measure \(E_2\) is an artificial error measure. Therefore, the factor 1/2 is optional and does not affect the value of \(\varvec{a}\). We include this factor because it provides consistency with quadratic functionals of a physical nature, such as virtually all energy functionals.

References

  • Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons, New York (2000)

    Google Scholar 

  • Aluru, N.R.: A point collocation method based on reproducing kernel approximations. Int. J. Numer. Meth. Engng. 47, 1083–1121 (2000)

    Article  MATH  Google Scholar 

  • Arnold, D.N., Boffi, D., Falk, R.S.: Quadrilateral \({H}(\rm div)\) finite elements. SIAM J. Numer. Anal. 42, 2429–2451 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold, D.N., Brezzi, F., Douglas, J.: PEERS: A new mixed finite element for plane elasticity. Japan J. Appl. Math. 1, 347–367 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold, D.N., Falk, R.S.: A new mixed formulation for elasticity. Numer. Math. 53, 13–30 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold, D.N., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92, 401–419 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Arroyo, M., Ortiz, M.: Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int. J. Numer. Meth. Engng. 65, 2167–2202 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Auricchio, F., BeirĂ£o da Veiga, L., Brezzi, F., Lovadina, C.: Mixed finite element methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 1, 2, pp. 149–201. John Wiley & Sons, Chichester (2017)

    Google Scholar 

  • BabuÅ¡ka, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • BabuÅ¡ka, I.: The finite element method with penalty. Math. Comp. 27, 221–228 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • BabuÅ¡ka, I., Banerjee, U., Osborn, J.E.: Survey of meshless and generalized finite element methods: A unified approach. Acta Numer. 1–125 (2003)

    Google Scholar 

  • BabuÅ¡ka, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Meth. Engng. 40, 727–758 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Backus, G., Gilbert, F.: The resolving power of gross earth data. Geophys. J. R. astr. Soc. 16, 169–205 (1968)

    Article  MATH  Google Scholar 

  • Bathe, K.-J.: Finite Element Procedures, 2nd edn. K.-J Bathe, Watertown (2014)

    MATH  Google Scholar 

  • Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Engng. 45, 601–620 (1999)

    Article  MATH  Google Scholar 

  • Belytschko, T., Gracie, R.: On XFEM applications to dislocations and interfaces. Int. J. Plast. 23, 1721–1738 (2007)

    Article  MATH  Google Scholar 

  • Belytschko, T., Krongauz, Y., Dolbow, J., Gerlach, C.: On the completeness of meshfree particle methods. Int. J. Numer. Meth. Engng. 43, 785–819 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko, T., Krongauz, Y., Fleming, M., Organ, D., Liu, W.K.: Smoothing and accelerated computations in the element free Galerkin method. J. Comput. Appl. Math. 74, 111–126 (1996a)

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Engrg. 139, 3–47 (1996b)

    Article  MATH  Google Scholar 

  • Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K.I.: Nonlinear Finite Elements for Continua and Structures, 2nd edn. John Wiley & Sons, Chichester (2014)

    MATH  Google Scholar 

  • Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Meth. Engng. 37, 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific, Belmont (1996)

    MATH  Google Scholar 

  • Bochev, P.B., Gunzburger, M.D.: Least-Squares Finite Element Methods. Springer, New York (2009)

    MATH  Google Scholar 

  • Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  • Boiveau, T., Burman, E.: A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity. IMA J. Numer. Anal. 36, 770–795 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Bonet, J., Kulasegaram, S.: Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int. J. Numer. Meth. Engng. 47, 1189–1214 (2000)

    Article  MATH  Google Scholar 

  • Bos, L.P., Salkauskas, K.: Moving least-squares are Backus-Gilbert optimal. J. Approx. Theory 59, 267–275 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  • Bracewell, R.N.: The Fourier Transform and its Applications, 3rd edn. McGraw-Hill, New York (1999)

    MATH  Google Scholar 

  • Braess, D.: Finite Elements—Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  • Brenner, S.C., Carstensen, C.: Finite element methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 1, 2nd edn., pp. 101–147. John Wiley & Sons, Chichester (2017)

    Google Scholar 

  • Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  • Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche OpĂ©rationnelle SĂ©r. Rouge 8, 129–151 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Brezzi, F., Douglas Jr., J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  • Burman, E.: A penalty free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions. SIAM J. Numer. Anal. 50, 1959–1981 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, J.S., Belytschko, T.: Meshless and meshfree methods. In: Engquist, B. (ed.) Encyclopedia of Applied and Computational Mathematics, pp. 886–894. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  • Chen, J.S., Han, W., You, Y., Meng, X.: A reproducing kernel method with nodal interpolation property. Int. J. Numer. Meth. Engng. 56, 935–960 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, J.S., Liu, W.K., Hillman, M.C., Chi, S.W., Lian, Y., Bessa, M.A.: Reproducing kernel particle method for solving partial differential equations. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 2, 2nd edn., pp. 691–734. John Wiley & Sons, Chichester (2017)

    Google Scholar 

  • Chen, J.S., Pan, C., Roque, C.M.O.L., Wang, H.P.: A Lagrangian reproducing kernel particle method for metal forming analysis. Comput. Mech. 22, 289–307 (1998)

    Article  MATH  Google Scholar 

  • Chen, J.S., Pan, C., Wu, C.T., Liu, W.K.: Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures. Comput. Methods Appl. Mech. Engrg. 139, 195–227 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, J.S., Wang, H.P.: New boundary condition treatments in meshfree computation of contact problems. Comput. Methods Appl. Mech. Engrg. 187, 441–468 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Chessa, J., Belytschko, T.: An extended finite element method for two-phase fluids. J. Appl. Mech. 70, 10–17 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Chi, S.W., Chen, J.S., Hu, H.Y., Yang, J.P.: A gradient reproducing kernel collocation method for boundary value problems. Int. J. Numer. Meth. Engng. 93, 1381–1402 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Christ, N.H., Friedberg, R., Lee, T.D.: Weights of links and plaquettes in a random lattice. Nucl. Phys. B 210, 337–346 (1982)

    Article  MathSciNet  Google Scholar 

  • Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam (1978)

    MATH  Google Scholar 

  • Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc. 49, 1–23 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  • de Borst, R., Crisfield, M.A., Remmers, J.J.C., Verhoosel, C.V.: Non-linear Finite Element Analysis of Solids and Structures, 2nd edn. John Wiley & Sons, Chichester (2012)

    Book  MATH  Google Scholar 

  • Duarte, C.A., Oden, J.T.: An \(h\)-\(p\) adaptive method using clouds. Comput. Methods Appl. Mech. Engrg. 139, 237–262 (1996a)

    Article  MathSciNet  MATH  Google Scholar 

  • Duarte, C.A., Oden, J.T.: \(H\)-\(p\) clouds—an \(h\)-\(p\) meshless method. Numer. Methods Partial Differential Eq. 12, 673–705 (1996b)

    Article  MathSciNet  MATH  Google Scholar 

  • Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Constructive Theory of Functions of Several Variables. Lecture Notes in Mathematics, vol. 571, pp. 85–100. Springer, Berlin (1976)

    Chapter  Google Scholar 

  • DĂ¼ster, A., Rank, E., SzabĂ³, B.: The \(p\)-version of the finite element and finite cell methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 3, 2 edn., pp. 137–171. John Wiley & Sons, Chichester (2017)

    Google Scholar 

  • Fasshauer, G.E.: Approximate moving least-squares approximation with compactly supported radial weights. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations, pp. 105–116. Springer, Berlin (2003)

    Chapter  Google Scholar 

  • Fleming, M., Chu, Y.A., Moran, B., Belytschko, T.: Enriched element-free Galerkin methods for crack tip fields. Int. J. Numer. Meth. Engng. 40, 1483–1504 (1997)

    Article  MathSciNet  Google Scholar 

  • Fletcher, R.: Practical Methods of Optimization, 2nd edn. John Wiley & Sons, Chichester (2000)

    Book  MATH  Google Scholar 

  • Fredholm, I.: Sur une classe d’équations fonctionnelles. Acta Math. 27, 365–390 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  • Fries, T.-P.: A corrected XFEM approximation without problems in blending elements. Int. J. Numer. Meth. Engng. 75, 503–532 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Fries, T.-P., Belytschko, T.: The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns. Int. J. Numer. Meth. Engng. 68, 1358–1385 (2006)

    Article  MATH  Google Scholar 

  • Fries, T.-P., Byfut, A., Alizada, A., Cheng, K.W., Schröder, A.: Hanging nodes and XFEM. Int. J. Numer. Meth. Engng. 86, 404–430 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Galerkin, B.G.: Series solutions of some cases of equilibrium of elastic beams and plates (in Russian). Vestn. Inshenernov. 1, 897–908 (1915)

    Google Scholar 

  • Gaul, L.: From Newton’s principia via Lord Rayleigh’s theory of sound to finite elements. In: Stein, E. (ed.) The History of Theoretical, Material and Computational Mechanics—Mathematics meets Mechanics and Engineering, pp. 385–398. Springer, Berlin (2014)

    Chapter  Google Scholar 

  • Gerasimov, T., RĂ¼ter, M., Stein, E.: An explicit residual-type error estimator for \(\mathbb{Q}_1\)-quadrilateral extended finite element method in two-dimensional linear elastic fracture mechanics. Int. J. Numer. Meth. Engng. 90, 1118–1155 (2012)

    Article  MATH  Google Scholar 

  • Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)

    MATH  Google Scholar 

  • Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. astr. Soc. 181, 375–389 (1977)

    Article  MATH  Google Scholar 

  • Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  • Griebel, M., Schweitzer, M.A.: A particle-partition of unity method, Part V: Boundary conditions. In: Hildebrandt, S., Karcher, H. (eds.) Geometric Analysis and Nonlinear Partial Differential Equations, pp. 519–542. Springer, Berlin (2003)

    Chapter  Google Scholar 

  • Griebel, M., Schweitzer, M.A. (eds.): Meshfree Methods for Partial Differential Equations I–VIII. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2003–2017)

    Google Scholar 

  • GĂ¼nther, F.C., Liu, W.K.: Implementation of boundary conditions for meshless methods. Comput. Methods Appl. Mech. Engrg. 163, 205–230 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Han, W., Meng, X.: Error analysis of reproducing kernel particle method. Comput. Methods Appl. Mech. Engrg. 190, 6157–6181 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Hansbo, A., Hansbo, P.: A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Engrg. 193, 3523–3540 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76, 1905–1915 (1971)

    Article  Google Scholar 

  • Hattori, G., Rojas-DĂ­az, R., SĂ¡ez, A., Sukumar, N., GarcĂ­a-SĂ¡nchez, F.: New anisotropic crack-tip enrichment functions for the extended finite element method. Comput. Mech. 50, 591–601 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Hegen, D.: Element-free Galerkin methods in combination with finite element approaches. Comput. Methods Appl. Mech. Engrg. 135, 143–166 (1996)

    Article  MATH  Google Scholar 

  • Holl, M., Loehnert, S., Wriggers, P.: An adaptive multiscale method for crack propagation and crack coalescence. Int. J. Numer. Meth. Engng. 93, 23–51 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, H.Y., Chen, J.S., Hu, W.: Weighted radial basis collocation method for boundary value problems. Int. J. Numer. Meth. Engng. 69, 2736–2757 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, H.Y., Chen, J.S., Hu, W.: Error analysis of collocation method based on reproducing kernel approximation. Numer. Methods Partial Differential Eq. 27, 554–580 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Huerta, A., Belytschko, T., FernĂ¡ndez-MĂ©ndez, S., Rabczuk, T., Zhuang, X., Arroyo, M.: Meshfree methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 2, 2 edn., pp. 653–690. John Wiley & Sons, Chichester (2017)

    Google Scholar 

  • Huerta, A., FernĂ¡ndez-MĂ©ndez, S.: Enrichment and coupling of the finite element and meshless methods. Int. J. Numer. Meth. Engng. 48, 1615–1636 (2000)

    Article  MATH  Google Scholar 

  • Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  • Irons, B.M., Zienkiewicz, O.C.: The isoparametric finite element system—a new concept in finite element analysis. In: Proceedings of Conference Recent Advances in Stress Analysis. Royal Aero Soc., London (1968)

    Google Scholar 

  • Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  • Kaljević, I., Saigal, S.: An improved element free Galerkin formulation. Int. J. Numer. Meth. Engng. 40, 2953–2974 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Kansa, E.J.: Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates. Comput. Math. Appl. 19, 127–145 (1990a)

    Article  MathSciNet  MATH  Google Scholar 

  • Kansa, E.J.: Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19, 147–161 (1990b)

    Article  MathSciNet  MATH  Google Scholar 

  • Krongauz, Y., Belytschko, T.: Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput. Methods Appl. Mech. Engrg. 131, 133–145 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Krysl, P., Belytschko, T.: Analysis of thin plates by the element-free Galerkin method. Comput. Mech. 17, 26–35 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comp. 37, 141–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Larson, M.G., Bengzon, F.: The Finite Element Method: Theory, Implementation, and Applications. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  • Lee, C.K., Liu, X., Fan, S.C.: Local multiquadric approximation for solving boundary value problems. Comput. Mech. 30, 396–409 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Levin, D.: The approximation power of moving least-squares. Math. Comp. 67, 1517–1531 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, S., Liu, W.K.: Meshfree Particle Methods. Springer, Berlin (2004)

    MATH  Google Scholar 

  • Liu, G.R.: Meshfree Methods—Moving Beyond the Finite Element Method, 2nd edn. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  • Liu, W.K., Chen, Y., Jun, S., Chen, J.S., Belytschko, T., Pan, C., Uras, R.A., Chang, C.T.: Overview and applications of the reproducing Kernel Particle methods. Arch. Comput. Methods Eng. 3, 3–80 (1996)

    Article  MathSciNet  Google Scholar 

  • Liu, W.K., Jun, S., Li, S., Adee, J., Belytschko, T.: Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Meth. Engng. 38, 1655–1679 (1995a)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Meth. Fluids 20, 1081–1106 (1995b)

    Article  MathSciNet  MATH  Google Scholar 

  • Lu, Y.Y., Belytschko, T., Gu, L.: A new implementation of the element free Galerkin method. Comput. Methods Appl. Mech. Engrg. 113, 397–414 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  • Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, 4th edn. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  • McLain, D.H.: Drawing contours from arbitrary data points. Comput. J. 17, 318–324 (1974)

    Article  Google Scholar 

  • Melenk, J.M.: On approximation in meshless methods. In: Blowey, J.F., Craig, A.W. (eds.) Frontiers in Numerical Analysis, pp. 65–141. Springer, Berlin (2005)

    Chapter  MATH  Google Scholar 

  • Melenk, J.M., BabuÅ¡ka, I.: The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Engrg. 139, 289–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • MoĂ«s, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Engng. 46, 131–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • MoĂ«s, N., Dolbow, J. E., Sukumar, N.: Extended finite element methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 3, 2 edn., pp. 173–193. John Wiley & Sons, Chichester (2017)

    Google Scholar 

  • Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: Diffuse approximation and diffuse elements. Comput. Mech. 10, 307–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Nedelec, J.C.: Mixed finite elements in \(\mathbb{R}^3\). Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Nitsche, J.A.: Ăœber ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hambg. 36, 9–15 (1971)

    Article  MATH  Google Scholar 

  • Oñate, E., Idelsohn, S., Zienkiewicz, O. C., Taylor, R. L.: A finite point method in computational mechanics. Application to convective transport and fluid flow. Int. J. Numer. Meth. Engng. 39, 3839–3866 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Oñate, E., Perazzo, F., Miquel, J.: A finite point method for elasticity problems. Comput. & Struct. 79, 2151–2163 (2001)

    Article  Google Scholar 

  • Organ, D., Fleming, M., Terry, T., Belytschko, T.: Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput. Mech. 18, 225–235 (1996)

    Article  MATH  Google Scholar 

  • Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

    MATH  Google Scholar 

  • Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Pan, V.Y.: How bad are Vandermonde matrices? SIAM J. Matrix Anal. & Appl. 37, 676–694 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T., Zi, G.: A meshfree method based on the local partition of unity for cohesive cracks. Comput. Mech. 39, 743–760 (2007)

    Article  MATH  Google Scholar 

  • Randles, P.W., Libersky, L.D.: Smoothed particle hydrodynamics: Some recent improvements and applications. Comput. Methods Appl. Mech. Engrg. 139, 375–408 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods (Proceedings of Conference, Consiglio Naz. delle Ricerche (C. N. R.), Rome, 1975), Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin (1977)

    Google Scholar 

  • Ritz, W.: Ăœber eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. Reine Angew. Math. 135, 1–61 (1909)

    Article  MathSciNet  MATH  Google Scholar 

  • Schröder, J., Schwarz, A., Steeger, K.: Least-squares mixed finite element formulations for isotropic and anisotropic elasticity at small and large strains. In: Schröder, J., Wriggers, P. (eds.) Advanced Finite Element Technologies, pp. 131–175. Springer, Berlin (2016)

    Chapter  MATH  Google Scholar 

  • Schwab, C.: \(p\)- and \(hp\)-Finite Element Methods—Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford (1998)

    Google Scholar 

  • Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference, pp. 517–524 (1968)

    Google Scholar 

  • Sibson, R.: A vector identity for the Dirichlet tessellation. Math. Proc. Camb. Phil. Soc. 87, 151–155 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Simone, A., Duarte, C.A., Van der Giessen, E.: A Generalized Finite Element Method for polycrystals with discontinuous grain boundaries. Int. J. Numer. Meth. Engng. 67, 1122–1145 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Stein, E.: History of the finite element method–mathematics meets mechanics–part I: Engineering developments. In: Stein, E. (ed.) The History of Theoretical, Material and Computational Mechanics-Mathematics meets Mechanics and Engineering, pp. 399–442. Springer, Berlin (2014)

    Chapter  MATH  Google Scholar 

  • Stein, E., Rolfes, R.: Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity. Comput. Methods Appl. Mech. Engrg. 84, 77–95 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53, 513–538 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Stenberg, R.: On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63, 139–148 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Strouboulis, T., BabuÅ¡ka, I., Copps, K.: The design and analysis of the Generalized Finite Element Method. Comput. Methods Appl. Mech. Engrg. 181, 43–69 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Strouboulis, T., Copps, K., BabuÅ¡ka, I.: The generalized finite element method. Comput. Methods Appl. Mech. Engrg. 190, 4081–4193 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Strutt, J.W. 3rd Baron Rayleigh.: The Theory of Sound, vol. 1. Macmillan and Co., London (1877)

    Google Scholar 

  • Sukumar, N.: Construction of polygonal interpolants: a maximum entropy approach. Int. J. Numer. Meth. Engng. 61, 2159–2181 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Sukumar, N., Moran, B., Belytschko, T.: The natural element method in solid mechanics. Int. J. Numer. Meth. Engng. 43, 839–887 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • SzabĂ³, B., BabuÅ¡ka, I.: Finite Element Analysis. John Wiley & Sons, New York (1991)

    MATH  Google Scholar 

  • Turner, M.J., Clough, R.W., Martin, H.C., Topp, L.J.: Stiffness and deflection analysis of complex structures. J. Aero. Sci. 23, 805–823 (1956)

    Article  MATH  Google Scholar 

  • Ventura, G., Xu, J.X., Belytschko, T.: A vector level set method and new discontinuity approximations for crack growth by EFG. Int. J. Numer. Meth. Engng. 54, 923–944 (2002)

    Article  MATH  Google Scholar 

  • Wendland, H.: Meshless Galerkin methods using radial basis functions. Math. Comp. 68, 1521–1531 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  • Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)

    MATH  Google Scholar 

  • Zhu, T., Atluri, S.N.: A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput. Mech. 21, 211–222 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 7th edn. Butterworth-Heinemann, Oxford (2013)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Olavi RĂ¼ter .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

RĂ¼ter, M.O. (2019). Galerkin Methods. In: Error Estimates for Advanced Galerkin Methods. Lecture Notes in Applied and Computational Mechanics, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-06173-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06173-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06172-2

  • Online ISBN: 978-3-030-06173-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics