Skip to main content

Modularity Versus Emergence: How to Cope with Complexity in Whole-Plant Physiology?

  • Chapter
  • First Online:
Book cover Emergence and Modularity in Life Sciences

Abstract

Complex, multigenic traits like growth, yield, or photosynthetic carbon assimilation are of central importance for our understanding of plant biology and are highly relevant for plant breeding, agriculture, and other applied plant sciences. Therefore, scientific description of complexity and the elucidation of its molecular basis have recently received increasing interest. Surprisingly though, less attention is given to the classical concepts of ‘modularity’ and ‘emergence’. Modular features of a biological system result from more or less autonomously acting (molecular) components, whereas novel, ‘emergent’ features emanate from their interaction. In the very limited work published on this issue, modularity and emergence were considered as strictly opposing concepts. Here, a new, semi-quantitative, heuristic approach is introduced describing the contribution of individual proteins to a complex trait (‘protein-trait relationships’). On a phenomenological basis, criteria are defined that allow to decide whether a protein is affecting the trait rather in a modular or emergent way, treating them as gradual, rather than mutually exclusive, features. The approach is exemplified by case studies related to photosynthetic carbon assimilation, making use of empirical data that are available from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert R, Acharya BR, Jeon BW, Zañudo JGT, Zhu M, Osman K et al (2017) A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops. PLoS Biol 15(9):e2003451

    Article  Google Scholar 

  • do Amaral MN, Souza GM (2017) The challenge to translate OMICS data to whole plant physiology: the context matters. Front Plant Sci 8:2146

    Google Scholar 

  • Anderson PW (1972) More is different. Science 177:393–396

    Article  CAS  Google Scholar 

  • Andrews TJ, Hudson GS, Mate CJ, von Caemmerer S, Evans JR, Arvidsson YB (1995) Rubisco: the consequences of altering its expression and activation in transgenic plants. J Exp Bot 46:1293–1300

    Article  CAS  Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow P (2009) The ‘root-brain’ hypothesis of Charles and Francis Darwin: revival after more than 125 years. Plant Signal Behav 4:1121–1127

    Article  Google Scholar 

  • Bedau MA (1997) Weak emergence. In: Tomberlin J (ed) Philosophical perspectives. Mind, causation and world, vol 11. Blackwell Malden, MA, US, pp 375–399

    Article  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Blatt MR, Wang Y, Leonhardt N, Hills A (2014) Exploring emergent properties in cellular homeostasis using OnGuard to model K+ and other ion transport in guard cells. J Plant Physiol 171:770–778

    Article  CAS  Google Scholar 

  • Buckley TN, Mott KA, Farquhar GD (2003) A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ 26:1767–1785

    Article  CAS  Google Scholar 

  • von Caemmerer S, Quick WP (2000) Rubisco: physiology in vivo. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis. Springer, Heidelberg, pp 85–113

    Chapter  Google Scholar 

  • zu Castell W, Fleischmann F, Heger T, Matyssek R (2015) Shaping theoretic foundations of holobiont-like systems. In: Canovas FM, Lüttge U, Matyssek R (eds) Progress in botany. Springer, Cham, Germany, pp 219–244

    Google Scholar 

  • Chen Z-H, Hills A, Bätz U, Amtmann A, Lew VL, Blatt MR (2012) Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. Plant Physiol 159:1235–1251

    Article  CAS  Google Scholar 

  • Cooper M, van Eeuwijk FA, Hammer GL, Podlich DW, Messina C (2009) Modeling QTL for complex traits: detection and context for plant breeding. Curr Opin Plant Biol 12:231–240

    Article  CAS  Google Scholar 

  • Cui J, Li P, Li G, Xu F, Zhao C, Li Y, Shi T et al (2008) AtPID: Arabidopsis thaliana protein interactome database—an integrative platform for plant systems biology. Nucleic Acids Res 36:D999–D1008

    Article  Google Scholar 

  • Darvasi A (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18:19–24

    Article  CAS  Google Scholar 

  • De Kroon H, Huber H, Stuefer JF, Van Groenendael JM (2005) A modular concept of phenotypic plasticity in plants. New Phytol 166:73–82

    Article  Google Scholar 

  • Eckardt NA, Snyder GW, Portis AR Jr, Ogren WL (1997) Growth and photosynthesis under high and low irradiance of Arabidopsis thaliana antisense mutants with reduced ribulose-1, 5-bisphosphate carboxylase/oxygenase activase content. Plant Physiol 113:575–586

    Article  CAS  Google Scholar 

  • Fell DA (1992) Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286:313–330

    Article  CAS  Google Scholar 

  • Franks PJ, Farquhar GD (2007) The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol 143:78–87

    Article  CAS  Google Scholar 

  • Fukushima A, Kusano M, Redestig H, Arita M, Saito K (2009) Integrated omics approaches in plant systems biology. Curr Opin Chem Biol 13:532–538

    Article  CAS  Google Scholar 

  • Gajdanowicz P, Michard E, Sandmann M, Rocha M, Corrêa LGG, Ramírez-Aguilar SJ, Dreyer I, et al (2011) Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc Natl Acad Sci USA 108:864–869

    Article  Google Scholar 

  • Goldstein J (2002) The singular nature of emergent levels: suggestions for a theory of emergence. Nonlinear Dyn Psychol Life Sci 6:293–309

    Article  Google Scholar 

  • Hart Y, Mayo AE, Milo R, Alon U (2011) Robust control of PEP formation rate in the carbon fixation pathway of C4 plants by a bi-functional enzyme. BMC Syst Biol 5:171

    Article  CAS  Google Scholar 

  • Hatch MD (1987) C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochimica Biophys Acta (BBA)—Rev Bioenerg 895:81–106

    Article  CAS  Google Scholar 

  • Haukioja E, Grubb PJ, Brown V, Bond WJ (1991) The influence of grazing on the evolution, morphology and physiology of plants as modular organisms [and Discussion]. Philos Trans R S Lond B Biol Sci 333:241–247

    Article  Google Scholar 

  • Helikar T, Konvalina J, Heidel J, Rogers JA (2008) Emergent decision-making in biological signal transduction networks. Proc Natl Acad Sci USA 105(6):1913–1918

    Article  CAS  Google Scholar 

  • Hills A, Chen Z-H, Amtmann A, Blatt MR, Lew VL (2012) OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. Plant Physiol 159:1026–1042

    Article  CAS  Google Scholar 

  • Jensen PR, Michelsen O, Westerhoff HV (1993) Control analysis of the dependence of Escherichia coli physiology on the H(+)-ATPase. Proc Natl Acad Sci USA 90:8068–8072

    Article  CAS  Google Scholar 

  • Kacser H, Burns J (1973) The control of flux. Symp Soc Exp Biol 27:65–104

    CAS  PubMed  Google Scholar 

  • Kahn D, Westerhoff HV (1991) Control theory of regulatory cascades. J Theor Biol 153:255–285

    Article  CAS  Google Scholar 

  • Kauffman S, Clayton P (2006) On emergence, agency, and organization. Biol Philos 21:501–521

    Article  Google Scholar 

  • Laughlin RB (2005) A different universe: reinventing physics from the bottom down. Basic Books, New York

    Google Scholar 

  • Lucas M, Laplaze L, Bennett MJ (2011) Plant systems biology: network matters. Plant Cell Environ 34:535–553

    Article  Google Scholar 

  • Lüttge U (2012) Modularity and emergence: biology’s challenge in understanding life. Plant Biol 14:865–871

    Article  Google Scholar 

  • Lüttge U (2013) Whole-plant physiology: synergistic emergence rather than modularity. In: Progress in botany. Springer, pp 165–190

    Google Scholar 

  • Lüttge U, Hütt M-T (2009) Talking patterns: communication of organisms at different levels of organization—an alternative view on systems biology. Nova Acta Leopoldina NF 96:161–174

    Google Scholar 

  • Maggio A, Zhu J-K, Hasegawa PM, Bressan RA (2006) Osmogenetics: Aristotle to Arabidopsis. Plant Cell 18:1542–1557

    Article  CAS  Google Scholar 

  • Nijhout HF, Berg AM, Gibson WT (2003) A mechanistic study of evolvability using the mitogen-activated protein kinase cascade. Evol Dev 5:281–294

    Article  CAS  Google Scholar 

  • Noble D (2012) A theory of biological relativity: no privileged level of causation. Interface Focus 2:55–64

    Article  Google Scholar 

  • Ohta S, Ishida Y, Usami S (2006) High-level expression of cold-tolerant pyruvate, orthophosphate dikinase from a genomic clone with site-directed mutations in transgenic maize. Mol Breed 18:29–38

    Article  CAS  Google Scholar 

  • Pezzulo G, Levine M (2016) Top-down models in biology: explanation and control of complex living systems. J R Soc Interface 13:20160555

    Article  Google Scholar 

  • Portis AR (1995) The regulation of Rubisco by Rubisco activase. J Exp Bot 46:1285–1291

    Article  CAS  Google Scholar 

  • Portis AR (2003) Rubisco activase—Rubisco’s catalytic chaperone. Photosynth Res 75:11–27

    Article  CAS  Google Scholar 

  • Prokopenko M, Boschetti F, Ryan AJ (2009) An information-theoretic primer on complexity, self-organization, and emergence. Complexity 15:11–28

    Article  Google Scholar 

  • Quick WP, Schurr U, Fichtner K, Schulze ED, Rodermel SR, Bogorad L, Stitt M (1991a) The impact of decreased Rubisco on photosynthesis, growth, allocation and storage in tobacco plants which have been transformed with antisense rbcS. Plant J 1:51–58

    Article  CAS  Google Scholar 

  • Quick WP, Schurr U, Scheibe R, Schulze E-D, Rodermel SR, Bogorad L, Stitt M (1991b) Decreased ribulose-1, 5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with ‘antisense’ rbcS. Planta 183:542–554

    Article  CAS  Google Scholar 

  • Raines CA (2003) The Calvin cycle revisited. Photosynth Res 75:1–10

    Article  CAS  Google Scholar 

  • Rest JS, Morales CM, Waldron JB, Opulente DA, Fisher J, Moon S, Bullaughey K, Dedousis D et al (2013) Nonlinear fitness consequences of variation in expression level of a eukaryotic gene. Mol Biol Evol 30:448–456

    Article  Google Scholar 

  • Roelfsema MRG, Hedrich R (2005) In the light of stomatal opening: new insights into ‘the Watergate’. New Phytol 167:665–691

    Article  CAS  Google Scholar 

  • Salvucci ME (1989) Regulation of Rubisco activity in vivo. Physiol Plant 77:164–171

    Article  CAS  Google Scholar 

  • Sinclair TR, Purcell LC (2005) Is a physiological perspective relevant in a ‘genocentric’ age? J Exp Bot 56:2777–2782

    Article  CAS  Google Scholar 

  • Souza GM, Lüttge U (2015) Stability as a phenomenon emergent from plasticity–complexity–diversity in eco-physiology. In: Lüttge U, Beyschlag W (eds) Progress in botany, vol 76. Springer, Cham, Germany, pp 211–239

    Google Scholar 

  • Souza GM, Prado CHBA, Ribeiro RV, Barbosa JPRAD, Goncalves AN, Habermann G (2016) Toward a systemic plant physiology. Theor Exp Plant Physiol 28(4):341–346

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Ann Rev Plant Biol 53:449–475

    Article  CAS  Google Scholar 

  • Stitt M, Schulze D (1994) Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ 17:465–487

    Article  CAS  Google Scholar 

  • Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M (2009) A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, maize. Plant Cell Environ 32:1211–1229

    Article  Google Scholar 

  • Volkov V (2014) How to integrate biological research into society and exclude errors in biomedical publications? Progress in theoretical and systems biology releases pressure on experimental research. Commun Integr Biol 7:e27966

    Article  Google Scholar 

  • Wagner A (1999) Redundant gene functions and natural selection. J Evol Biol 12:1–16

    Article  Google Scholar 

  • Wegner LH (2014) Root pressure and beyond: energetically uphill water transport into xylem vessels? J Exp Bot 65:381–393

    Article  CAS  Google Scholar 

  • Wegner LH (2015a) Interplay of water and nutrient transport: a whole-plant perspective. In: Lüttge U, Beyschlag W (eds) Progress in botany, vol 76. Springer, Cham, Germany, pp 109–141

    Google Scholar 

  • Wegner LH (2015b) A thermodynamic analysis of the feasibility of water secretion into xylem vessels against a water potential gradient. Funct Plant Biol 42:828–835

    Article  Google Scholar 

  • Wegner LH (2017) Cotransport of water and solutes in plant membranes: the molecular basis, and physiological functions. AIMS Biophys 4(2):192–209

    Article  CAS  Google Scholar 

  • Wu L, Candille SI, Choi Y, Xie D, Jiang L, Li-Pook-Than J, Tang H, Snyder M (2013) Variation and genetic control of protein abundance in humans. Nature 499:79–82

    Article  CAS  Google Scholar 

  • Yuan JS, Galbraith DW, Dai SY, Griffin P, Stewart CN (2008) Plant systems biology comes of age. Trends Pant Sci 13:165–171

    Article  CAS  Google Scholar 

  • Zimmermann U, Steudle E (1978) Physical aspects of water relations of plant cells. Adv Botanical Res 6:45–117

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. Dr. Rainer Matyssek, Weihenstephan, Germany; Prof. Dr. Sergey Shabala, Hobart, Australia; and Dr. Vadim Volkov, Davis, USA, for discussion and for critical reading of a draft version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars H. Wegner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wegner, L.H. (2019). Modularity Versus Emergence: How to Cope with Complexity in Whole-Plant Physiology?. In: Wegner, L., Lüttge, U. (eds) Emergence and Modularity in Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-06128-9_4

Download citation

Publish with us

Policies and ethics