Skip to main content

Salinity Stress Tolerance in Plants: Physiological, Molecular, and Biotechnological Approaches

  • Chapter
  • First Online:
Plant Abiotic Stress Tolerance

Abstract

Soil salinity is a major abiotic stress affecting the performance of crop plants around the world adversely. Salinity can create a mix of complex interactions that affect plant nutrient uptake, metabolism, and susceptibility to biotic stresses. This negative interaction may reduce nutrient use efficiency and thus reduces the growth parameters. In addition to various management operations, such as crop management, to reduce the negative effects of salinity on plant growth, application of salinity-tolerant varieties or genotypes is a very interesting strategy to reduce the cost of salinity and environmental contamination. Salinity tolerance in plants not only varies widely among different species but is also strongly influenced by the environmental conditions. The salinity tolerance mechanisms of the plant are investigated at three levels of whole plant- cellular, and molecular levels. Particularly, the response at the whole plant is vital for some plants but is generally not used for all plants. It seems that cellular responses are conserved among many plants. Considering the advances made in recent decades, breeding for increased tolerance through gene transfer and the production of transgenic plants is considered as excellent and low-cost method. Perhaps the most valuable outcome of the biotechnology program is to use molecular tools for the breeding programs. Identifying tightly linked molecular markers with the target gene and mapping it on the chromosome is an important goal for cloning the genes and marker-assisted selection (MAS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarshahr M, Rabiei B, Lahigi HS (2011) Assessing genetic diversity of rice varieties under drought stress conditions. Not Sci Biol 3:114–123

    Google Scholar 

  • Abdeshahian M, Nabipour M, Meskarbashee M (2010) Chlorophyll fluorescence as criterion for the diagnosis salt stress in wheat (Triticum aestivum) plants. Int J Chem Biol Eng 4:184–186

    Google Scholar 

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18. https://doi.org/10.3390/agronomy7010018

    Article  CAS  Google Scholar 

  • Afzali S, Shariatmadari H, Hajabbasi M (2011) Sodium chloride effects on seed germination, growth and ion concentration in chamomile (Matricaria chamomilla). Iran Agric Res 29:107–118

    Google Scholar 

  • Agrawal C, Sen S, Chatterjee A, Rai S, Yadav S, Singh S, Rai L (2015) Signal perception and mechanism of salt toxicity/tolerance in photosynthetic organisms: cyanobacteria to plants. In: Bhumi NT, Maria M (eds) Stress responses in plants. Springer, Cham, pp 79–113

    Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants. Plant Soil Environ 54:89–99

    Google Scholar 

  • Ahmad P, Azooz M, Prasad M (2013) Salt stress in plants. Springer, Dordrecht

    Google Scholar 

  • Akram MS, Ashraf M (2011) Exogenous application of potassium dihydrogen phosphate can alleviate the adverse effects of salt stress on sunflower. J Plant Nutr 34:1041–1057

    CAS  Google Scholar 

  • Akram NA, Jamil A (2007) Appraisal of physiological and biochemical selection criteria for evaluation of salt tolerance in canola (Brassica napus L.). Pak J Bot 39:1593–1608

    Google Scholar 

  • Akram MS, Ashraf M, Akram NA (2009) Effectiveness of potassium sulfate in mitigating salt-induced adverse effects on different physio-biochemical attributes in sunflower (Helianthus annuus L.). Flora-Morpho Dist Funct Ecolo Plant 204:471–483

    Google Scholar 

  • Almeida DM, Oliveira MM, Saibo NJ (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 40:326–345

    PubMed  PubMed Central  CAS  Google Scholar 

  • Almodares A, Hadi M, Dosti B (2007) Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. J Biol Sci 7:1492–1495

    Google Scholar 

  • Anagholi A, Tabatabaei S, Fouman A (2010) Evaluation of salinity tolerance of forage sorghum varieties with stress tolerance and susceptibility indices. Electron J Crop Prod 3:839–841

    Google Scholar 

  • Asghari R, Ahmadvand R (2018) Salinity stress and its impact on morpho-physiological characteristics of Aloe Vera. Pertanika J Trop Agric Sci 41:411–422

    Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752

    PubMed  CAS  Google Scholar 

  • Ashraf M, Harris P (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    CAS  Google Scholar 

  • Ashraf M, Harris P (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    CAS  Google Scholar 

  • Ashraf M, Wu L (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Google Scholar 

  • Assaha DV, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509. https://doi.org/10.3389/fphys.2017.00509

    Article  PubMed  PubMed Central  Google Scholar 

  • Bae D, Yong K, Chun S (2006) Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. J Cent Eur Agr 7:273–282

    Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    PubMed  CAS  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    PubMed  CAS  Google Scholar 

  • Balouchi H (2010) Screening wheat parents of mapping population for heat and drought tolerance, detection of wheat genetic variation. Int J Biol Sci 6:56–66

    Google Scholar 

  • Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000Res 5:1–10

    Google Scholar 

  • Benlloch M, Ojeda M, Ramos J, Rodriguez-Navarro A (1994) Salt sensitivity and low discrimination between potassium and sodium in bean plants. Plant and Soil 166:117–123

    CAS  Google Scholar 

  • Berglund LE, Petersen TE, Fedosov SN, Nexo E, Laursen NB, Jensen EO (2017) Transgenic plants expressing cobalamin binding proteins. Google Patents

    Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    PubMed  PubMed Central  CAS  Google Scholar 

  • Calow R, MacDonald A, Le Sève MD (2018) The environmental dimensions of universal access to safe water. In: Oliver C, Tom S (eds) Equality in water and sanitation services. Routledge, London, pp 110–132

    Google Scholar 

  • Chartzoulakis K (2011) The use of saline water for irrigation of olives: effects on growth, physiology, yield and oil quality. Acta Hortic 888:97–108

    CAS  Google Scholar 

  • Chartzoulakis K, Klapaki G (2000) Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci Hortic 86:247–260

    CAS  Google Scholar 

  • Chartzoulakis K, Therios I, Misopolinos N, Noitsakis B (1995) Growth, ion content and photosynthetic performance of salt-stressed kiwifruit plants. Irrig Sci 16:23–28

    Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    PubMed  CAS  Google Scholar 

  • Cuartero J, Bolarin M, Asins M, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57:1045–1058

    PubMed  CAS  Google Scholar 

  • D’Amelia L, Dell’Aversana E, Woodrow P, Ciarmiello LF, Carillo P (2018) Metabolomics for crop improvement against salinity stress. In: Vinay K, Shabir HW, Penna S, Lam-Son PT (eds) Salinity responses and tolerance in plants. Springer, Cham, pp 267–287

    Google Scholar 

  • Das SK (2014) Role of micronutrient in rice cultivation and management strategy in organic agriculture—a reappraisal. Agric Sci 5:765–769

    CAS  Google Scholar 

  • Dawood MG (2018) Stimulating plant tolerance against abiotic stress through seed priming. In: Amitava R, Harikesh BS (eds) Advances in seed priming. Springer, Singapore, pp 147–183

    Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    PubMed  PubMed Central  CAS  Google Scholar 

  • Deshmukh R et al (2014) Integrating omic approaches for abiotic stress tolerance in soybean. Front Plant Sci 5:244. https://doi.org/10.3389/fpls.2014.00244

    Article  PubMed  PubMed Central  Google Scholar 

  • Essa TA, Al-Ani DH (2001) Effect of salt stress on the performance of six soybean genotypes. Pak J Biol Sci 4:175–177

    Google Scholar 

  • Fariduddin Q, Varshney P, Yusuf M, Ali A, Ahmad A (2013) Dissecting the role of glycine betaine in plants under abiotic stress. Plant Stress 7:8–18

    Google Scholar 

  • Fernandez GC (1993) Effective selection criteria for assessing plant stress tolerance. In: Proceedings of the international symposium on “adaptation of vegetables and other food crops in temperature and water stress”, 13-181, 992, 257, 270

    Google Scholar 

  • Fisarakis I, Chartzoulakis K, Stavrakas D (2001) Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agr Water Manage 51:13–27

    Google Scholar 

  • Fischer R, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agr Res 29:897–912

    Google Scholar 

  • Flowers T, Flowers S (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Manag 78:15–24

    Google Scholar 

  • Forlani G, Bertazzini M, Cagnano G (2018) Stress-driven increase in proline levels, and not proline levels themselves, correlates with the ability to withstand excess salt in a group of 17 Italian rice genotypes. Plant Biol. https://doi.org/10.1111/plb.12916

    PubMed  Google Scholar 

  • Geissler N, Hussin S, Koyro H-W (2009) Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environ Exp Bot 65:220–231

    CAS  Google Scholar 

  • Ghomi K, Rabiei B, Sabouri H, Sabouri A (2013) Mapping QTLs for traits related to salinity tolerance at seedling stage of rice (Oryza sativa L.): an agrigenomics study of an Iranian rice population. OMICS 17:242–251

    PubMed  CAS  Google Scholar 

  • Gomathi R, Rakkiyapan P (2011) Comparative lipid peroxidation, leaf membrane thermostability, and antioxidant system in four sugarcane genotypes differing in salt tolerance. Int J Plant Physiol Biochem 3:67–74

    CAS  Google Scholar 

  • Gregorio GB, Senadhira D, Mendoza RD (1997) Screening rice for salinity tolerance. IRRI discussion paper series

    Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596. https://doi.org/10.1155/2014/701596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanachi S, Van Labeke M-C, Mehouachi T (2014) Application of chlorophyll fluorescence to screen eggplant (Solanum melongena L.) cultivars for salt tolerance. Photosynthetica 52:57–62

    CAS  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787. https://doi.org/10.3389/fpls.2016.01787

    Article  PubMed  PubMed Central  Google Scholar 

  • HanumanthaRao B, Nair RM, Nayyar H (2016) Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Front Plant Sci 7:957. https://doi.org/10.3389/fpls.2016.00957

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardie M, Doyle R (2012) Measuring soil salinity. In: Shabala S, Cuin T (eds) Plant salt tolerance. Methods in molecular biology (Methods and protocols). Humana Press, Totowa, pp 415–425

    Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10

    Google Scholar 

  • Hatfield JL, Sauer TJ, Cruse RM (2017) Soil: the forgotten piece of the water, food, energy nexus. In: Donald LS (ed) Advances in agronomy. Academic Press, New York, pp 1–46

    Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hossain MA, Hoque MA, Burritt DJ, Fujita M (2014) Proline protects plants against abiotic oxidative stress: biochemical and molecular mechanisms. In: Parvaiz A (ed) Oxidative damage to plants, antioxidant networks and signaling. Academic Press, New York, pp 477–522

    Google Scholar 

  • Hussin S, Geissler N, Koyro H-W (2013) Effect of NaCl salinity on Atriplex nummularia (L.) with special emphasis on carbon and nitrogen metabolism. Acta Physiol Plant 35:1025–1038

    CAS  Google Scholar 

  • Jeschke WD, Wolf O (1993) Importance of mineral nutrient cycling for salinity tolerance of plants. In: Lieth H, Al Masoom AA (eds) Towards the rational use of high salinity tolerant plants. Springer, Dordrecht, pp 265–277

    Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    PubMed  CAS  Google Scholar 

  • Jiang C, Belfield EJ, Cao Y, Smith JAC, Harberd NP (2013) An Arabidopsis soil-salinity–tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. Plant Cell 25(9):3535–3552. https://doi.org/10.1105/tpc.113.115659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jouyban Z (2012) The effects of salt stress on plant growth. Tech J Eng Appl Sci 2:7–10

    CAS  Google Scholar 

  • Juan M, Rivero RM, Romero L, Ruiz JM (2005) Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environ Exp Bot 54:193–201

    CAS  Google Scholar 

  • Kafi M (2009) The effects of salinity and light on photosynthesis, respiration and chlorophyll fluorescence in salt-tolerant and salt-sensitive wheat (Triticum aestivum L.) cultivars. J Agric Sci Technol 11:535–547

    Google Scholar 

  • Kafi M, Mahdavi Damghani A (2001) Mechanisms of environmental stress resistance in plants (in Persian). Ferdowsi University Press, Mashad.

    Google Scholar 

  • Kalaji HM, Carpentier R, Allakhverdiev SI, Bosa K (2012) Fluorescence parameters as early indicators of light stress in barley. J Photochem Photobiol B 112:1–6

    PubMed  CAS  Google Scholar 

  • Kanojia A, Dijkwel PP (2018) Abiotic stress responses are governed by reactive oxygen species and age. Annu Plant Rev. 1:1–32. https://doi.org/10.1002/9781119312994.apr0611

  • Kavi Kishor PB, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37:300–311

    PubMed  CAS  Google Scholar 

  • Keutgen AJ, Pawelzik E (2009) Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environ Exp Bot 65:170–176

    CAS  Google Scholar 

  • Key S, Ma JK, Drake PM (2008) Genetically modified plants and human health. Proc R Soc Med 101:290–298

    Google Scholar 

  • Khan M et al (2009) Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivum L.). Pak J Bot 41:633–638

    Google Scholar 

  • Khan MS, Ahmad D, Khan MA (2015) Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electron J Biotechnol 18:257–266

    CAS  Google Scholar 

  • Kordrostami M, Rahimi M (2015) Molecular markers in plants: concepts and applications. G3M 13:4024–4031

    Google Scholar 

  • Kordrostami M, Rabiei B, Kumleh HH (2016) Association analysis, genetic diversity and haplotyping of rice plants under salt stress using SSR markers linked to SalTol and morpho-physiological characteristics. Plant Syst Evol 302:871–890

    CAS  Google Scholar 

  • Kordrostami M, Rabiei B, Kumleh HH (2017) Biochemical, physiological and molecular evaluation of rice cultivars differing in salt tolerance at the seedling stage. Physiol Mol Biol Plants 23:529–544

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lang L et al (2017) Quantitative trait locus mapping of salt tolerance and identification of salt-tolerant genes in Brassica napus L. Front Plant Sci 8:1000. https://doi.org/10.3389/fpls.2017.01000

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X-J, Yang M-F, Zhu Y, Liang Y, Shen S-H (2011) Proteomic analysis of salt stress responses in rice shoot. J Plant Biol 54:384. https://doi.org/10.1007/s12374-011-9173-8

    Article  CAS  Google Scholar 

  • Liang Y, Chen Q, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    PubMed  CAS  Google Scholar 

  • López-Aguilar R, Medina-Hernández D, Ascencio-Valle F, Arce-Montoya M, Larrinaga-Mayoral JA (2012) Differential responses of Chiltepin (Capsicum annuum var. glabriusculum) and Poblano (Capsicum annuum var. annuum) hot peppers to salinity at the plantlet stage. Afr J Biotechnol 11:2642–2653

    Google Scholar 

  • Maathuis FJ, Ahmad I, Patishtan J (2014) Regulation of Na+ fluxes in plants. Front Plant Sci 5:467. https://doi.org/10.3389/fpls.2014.00467

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  PubMed  Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    PubMed  CAS  Google Scholar 

  • Miranda D, Fischer G, Mewis I, Rohn S, Ulrichs C (2014) Salinity effects on proline accumulation and total antioxidant activity in leaves of the cape gooseberry (Physalis peruviana L.). J Appl Bot Food Qual 87:67–73

    Google Scholar 

  • Misra AK (2014) Climate change and challenges of water and food security. Int J Sustain Built Environ 3:153–165

    Google Scholar 

  • Morales F, Abadía A, AbadÞa J (2008) Photoinhibition and photoprotection under nutrient deficiencies, drought and salinity. In: Demmig-Adams B, Adams WW, Mattoo AK (eds) Photoprotection, photoinhibition, gene regulation, and environment. Springer, Dordrecht, pp 65–85

    Google Scholar 

  • Mousa MA, Al-Qurashi AD, Bakhashwain AA (2013) Response of tomato genotypes at early growing stages to irrigation water salinity. J Food Agr Environ 11:501–507

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    PubMed  CAS  Google Scholar 

  • Negrão S, Schmöckel S, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    PubMed  Google Scholar 

  • Newell N (2013) Effects of soil salinity on plant growth plant physiology. Available at https://pages.stolaf.edu/wpcontent/uploads/sites/253/2015/03/Salinity-in-Plants.pdf (accessed January 2019).

  • Niu G, Cabrera RI (2010) Growth and physiological responses of landscape plants to saline water irrigation: a review. HortSci 45:1605–1609

    Google Scholar 

  • Niu X, Narasimhan ML, Salzman RA, Bressan RA, Hasegawa PM (1993) NaCl regulation of plasma membrane H+-ATPase gene expression in a glycophyte and a halophyte. Plant Physiol 103:713–718

    PubMed  PubMed Central  CAS  Google Scholar 

  • Otitoloju K (2016) Salt-induced modifications in the vegetative anatomy of bottonweed and peruvian spikesedge. Int J Mar Sci 6:47. https://doi.org/10.5376/ijms.2016.06.0047

    Article  Google Scholar 

  • Pakniyat H, Armion M (2007) Sodium and proline accumulation as osmoregulators in tolerance of sugar beet genotypes to salinity. Pak J Biol Sci 10:4081–4086

    PubMed  CAS  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537. https://doi.org/10.3389/fpls.2017.00537

    Article  PubMed  PubMed Central  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    PubMed  CAS  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075

    CAS  Google Scholar 

  • Pedrol N, González L, Reigosa MJ (2006) Allelopathy and abiotic stress. In: Reigosa M, Pedrol N, González L (eds) Allelopathy. Springer, Dordrecht, pp 171–209

    Google Scholar 

  • Pessarakli M (2016) Handbook of plant and crop stress, 3rd edn. CRC press, Boca Raton

    Google Scholar 

  • Pinheiro HA et al (2008) Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L) seedlings subjected to salt stress conditions. Ind Crop Prod 27:385–392

    CAS  Google Scholar 

  • Prapaga K, Dasina S, Shanika W (2015) Effect of different salinity levels of a soil on nutrient availability of manure amended soil. In: 5th international symposium, IntSym 2015, SEUSL

    Google Scholar 

  • Qados AMA (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agr Sci 10:7–15

    Google Scholar 

  • Rasool S, Hameed A, Azooz M, Siddiqi T, Ahmad P (2013) Salt stress: causes, types and responses of plants. In: Ahmad P, Azooz M, Prasad M (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 1–24

    Google Scholar 

  • Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3:458–475

    PubMed  PubMed Central  Google Scholar 

  • Rhoades J, Chanduvi F (1999) Soil salinity assessment: methods and interpretation of electrical conductivity measurements. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci 160:265–272

    PubMed  CAS  Google Scholar 

  • Rosielle A, Hamblin J (1981) Theoretical aspects of selection for yield in stress and non-stress environment 1. Crop Sci 21:943–946

    Google Scholar 

  • Roy D (2000) Plant breeding: analysis and exploitation of variation. Alpha Science Int’l Ltd, Oxford

    Google Scholar 

  • Roy B, Noren S, Mandal AB, Basu AK (2011) Genetic engineering for abiotic stress tolerance in agricultural crops. Biotechnology 10:1–22

    CAS  Google Scholar 

  • Saleem A, Ashraf M, Akram N (2011) Salt (NaCl)-induced modulation in some key physio-biochemical attributes in okra (Abelmoschus esculentus L.). J Agron Crop Sci 197:202–213

    CAS  Google Scholar 

  • Sami F, Yusuf M, Faizan M, Faraz A, Hayat S (2016) Role of sugars under abiotic stress. Plant Physiol Biochem 109:54–61

    PubMed  CAS  Google Scholar 

  • Scherr SJ, McNeely JA (2008) Biodiversity conservation and agricultural sustainability: towards a new paradigm of ‘ecoagriculture’ landscapes. Philos Trans R Soc Lond B Biol Sci 363:477–494

    PubMed  Google Scholar 

  • Seffino LG (1998) Salinity effects on the early development stages of Panicum coloratum: cultivar differences. Grass Forage Sci 53:270–278

    Google Scholar 

  • Segami S, Asaoka M, Kinoshita S, Fukuda M, Nakanishi Y, Maeshima M (2018) Biochemical, structural, and physiological characteristics of vacuolar H+-pyrophosphatase. Plant Cell Physiol 59:1300–1308

    PubMed  CAS  Google Scholar 

  • Shokri-Gharelo R, Noparvar PM (2018) Molecular response of canola to salt stress: insights on tolerance mechanisms. PeerJ 6:e4822

    PubMed  PubMed Central  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    PubMed  CAS  Google Scholar 

  • Silva EN, Ribeiro RV, Ferreira-Silva SL, Viégas RA, Silveira JAG (2011) Salt stress induced damages on the photosynthesis of physic nut young plants. Sci Agric 68:62–68

    Google Scholar 

  • Singh B (2015) Plant breeding: principles and methods. Kalyani Publishers, New Delhi

    Google Scholar 

  • Singh M, Srivastava J, Kumar A (1992) Cell membrane stability in relation to drought tolerance in wheat genotypes. J Agron Crop Sci 168:186–190

    Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    PubMed  PubMed Central  CAS  Google Scholar 

  • Suprasanna P, Nikalje G, Rai A (2016) Osmolyte accumulation and implications in plant abiotic stress tolerance. In: Iqbal N, Nazar R, Khan NA (eds) Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi, pp 1–12

    Google Scholar 

  • Sutcliffe JF, Baker DA (1981) Plants and mineral salts. Edward Arnold (Publishers) Ltd, London

    Google Scholar 

  • Tanji KK (2002) Salinity in the soil environment. In: Läuchli A, Lüttge U (eds) Salinity: environment-plants-molecules. Springer, Dordrecht, pp 21–51

    Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl ions on barley growth under salinity stress. J Exp Bot 62:2189–2203

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B (2007) The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ Exp Bot 59:173–178

    CAS  Google Scholar 

  • Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62:1–9

    CAS  Google Scholar 

  • Turan S, Cornish K, Kumar S (2012) Salinity tolerance in plants: breeding and genetic engineering. Aust J Crop Sci 6:1337–1348

    Google Scholar 

  • Vaz J, Sharma PK (2011) Relationship between xanthophyll cycle and non-photochemical quenching in rice (Oryza sativa L.) plants in response to light stress. Indian J Exp Biol 49:60–67

    PubMed  Google Scholar 

  • Venkatesh J, Upadhyaya CP, Yu J-W, Hemavathi A, Kim DH, Strasser RJ, Park SW (2012) Chlorophyll a fluorescence transient analysis of transgenic potato overexpressing D-galacturonic acid reductase gene for salinity stress tolerance. Hort Environ Biotechnol 53:320–328

    CAS  Google Scholar 

  • Vishwakarma K et al (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161. https://doi.org/10.3389/fpls.2017.00161

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakeel A, Farooq M, Qadir M, Schubert S (2011) Potassium substitution by sodium in plants. CRC Crit Rev Plant Sci 30:401–413

    CAS  Google Scholar 

  • Wang D, Shannon M, Grieve C (2001) Salinity reduces radiation absorption and use efficiency in soybean. Field Crop Res 69:267–277

    Google Scholar 

  • Wani AS, Ahmad A, Hayat S, Fariduddin Q (2013) Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea. Saudi J Biol Sci 20:183–193

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wani S, Gaur A, Shikari A, Iqbal A, Pandita D (2015) Transgenic rice: advancements and achievements. Adv Genet Eng 4:1–3

    CAS  Google Scholar 

  • Wu X-X, Ding H-D, Chen J-L, Zhang H-J, Zhu W-M (2010) Attenuation of salt-induced changes in photosynthesis by exogenous nitric oxide in tomato (Lycopersicon esculentum Mill. L.) seedlings. Afr J Biotechnol 9:7837–7846

    CAS  Google Scholar 

  • Xu Y (2010) Molecular plant breeding. Cabi, Wallingford

    Google Scholar 

  • Yang J, Zheng W, Tian Y, Wu Y, Zhou D (2011) Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica 49:275–284

    CAS  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    PubMed  CAS  Google Scholar 

  • Zhen-hua Z, Qiang L, Hai-xing S, Xiang-min R, Ismail AM (2012) Responses of different rice (Oryza sativa L.) genotypes to salt stress and relation to carbohydrate metabolism and chlorophyll content. Afr J Agr Res 7:19–27

    Google Scholar 

  • Zhifang G, Loescher W (2003) Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimer. Plant Cell Environ 26:275–283

    CAS  Google Scholar 

  • Zhou H et al (2014) Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins. Plant Cell 26(3):1166–1182. https://doi.org/10.1105/tpc.113.117069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziaf K, Amjad M, Pervez MA, Iqbal Q, Rajwana IA, Ayyub M (2009) Evaluation of different growth and physiological traits as indices of salt tolerance in hot pepper (Capsicum annuum L.). Pak J Bot 41:1797–1809

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Kordrostami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kordrostami, M., Rabiei, B. (2019). Salinity Stress Tolerance in Plants: Physiological, Molecular, and Biotechnological Approaches. In: Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H. (eds) Plant Abiotic Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_4

Download citation

Publish with us

Policies and ethics