Skip to main content

Surface Modification of Magnetic Nanoparticles in Biomedicine

  • Chapter
  • First Online:
  • 1615 Accesses

Abstract

Nanobiotechnology is proven for its advantage in several applications including applied biomedicine. The application of nanobiotechnology is possible in many aims such as drug and diagnostic test developments. Many new nanoparticles are developed and applied at present to serve those purposes. In this specific chapter, the author will focus on the surface modification of magnetic nanoparticles which pose specific properties of nanoparticle and magnetic property.

The application of surface modification of magnetic nanoparticles for pharmaceutical process as well as diagnostic test development will be summarized and presented in this article. Summary on important reports on the mentioned specific topics is also given in this article.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wiwanitkit, V., Sereemaspun, A., & Rojanathanes, R. (2009). Effect of gold nanoparticle on the microscopic morphology of white blood cell. Cytopathology, 20(2), 109–110.

    Article  CAS  Google Scholar 

  2. Wiwanitkit, V., Sereemaspun, A., & Rojanathanes, R. (2009). Identification of gold nanoparticle in lymphocytes: A confirmation of direct intracellular penetration effect. Turkish Journal of Haematology, 26(1), 29–30.

    PubMed  Google Scholar 

  3. Sereemaspun, A., Rojanathanes, R., & Wiwanitkit, V. (2008). Effect of gold nanoparticle on renal cell: An implication for exposure risk. Renal Failure, 30(3), 323–325.

    Article  CAS  Google Scholar 

  4. Brigger, I., Dubernet, C., & Couvreur, P. (2002). Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 54(5), 631–651.

    Article  CAS  Google Scholar 

  5. Azzazy, H. M., Mansour, M. M., & Kazmierczak, S. C. (2006). Nanodiagnostics: A new frontier for clinical laboratory medicine. Clinical Chemistry, 52(7), 1238–1246.

    Article  CAS  Google Scholar 

  6. Jain, K. K. (2003). Nanodiagnostics: Application of nanotechnology in molecular diagnostics. Expert Review of Molecular Diagnostics, 3(2), 153–161.

    Article  CAS  Google Scholar 

  7. Tietze, R., Zaloga, J., Unterweger, H., Lyer, S., Friedrich, R. P., Janko, C., et al. (2015). Magnetic nanoparticle-based drug delivery for cancer therapy. Biochemical and Biophysical Research Communications, 468(3), 463–470.

    Article  CAS  Google Scholar 

  8. Vallabani, N. V. S., & Singh, S. (2018). Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. Biotech, 8(6), 279.

    Google Scholar 

  9. Laurent, S., Saei, A. A., Behzadi, S., Panahifar, A., & Mahmoudi, M. (2014). Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: Opportunities and challenges. Expert Opinion on Drug Delivery, 11(9), 1449–1470.

    Article  CAS  Google Scholar 

  10. Strehl, C., Maurizi, L., Gaber, T., Hoff, P., Broschard, T., Poole, A. R., et al. (2016). Modification of the surface of superparamagnetic iron oxide nanoparticles to enable their safe application in humans. International Journal of Nanomedicine, 11, 5883–5896.

    Article  CAS  Google Scholar 

  11. Bonilla, A. M., & Gonzalez, P. H. (2017). Hybrid polymeric-magnetic nanoparticles in cancer treatments. Current Pharmaceutical Design, 23(35), 5392–5402.

    CAS  PubMed  Google Scholar 

  12. Sun, W., Mignani, S., Shen, M., & Shi, X. (2016). Dendrimer-based magnetic iron oxide nanoparticles: Their synthesis and biomedical applications. Drug Discovery Today, 21(12), 1873–1885.

    Article  CAS  Google Scholar 

  13. He, Y., Zhang, L., Zhu, D., & Song, C. (2014). Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy. International Journal of Nanomedicine, 9, 4055–4066.

    Article  Google Scholar 

  14. Singh, H., Du, J., Singh, P., Mavlonov, G. T., & Yi, T. H. (2018). Development of superparamagnetic iron oxide nanoparticles via direct conjugation with ginsenosides and its in-vitro study. Journal of Photochemistry and Photobiology. B, 185, 100–110.

    Article  CAS  Google Scholar 

  15. Miranda, M. S., Rodrigues, M. T., Domingues, R. M. A., Costa, R. R., Paz, E., Rodríguez-Abreu, C., et al. (2018). Development of inhalable superparamagnetic iron oxide nanoparticles (SPIONs) in microparticulate system for antituberculosis drug delivery. Advanced Healthcare Materials, 23, e1800124. https://doi.org/10.1002/adhm.201800124

    Article  Google Scholar 

  16. Silva, M. O. D., Carneiro, M. L. B., Siqueira, J. L. N., Báo, S. N., & Souza, A. R. (2018). Development of a promising antitumor compound based on rhodium(II) succinate associated with iron oxide nanoparticles coated with lauric acid/albumin hybrid: synthesis, colloidal stability and cytotoxic effect in breast carcinoma cells. Journal of Nanoscience and Nanotechnology, 18(6), 3832–3843.

    Article  Google Scholar 

  17. Muzio, G., Miola, M., Ferraris, S., Maggiora, M., Bertone, E., Puccinelli, M. P., et al. (2017). Innovative superparamagnetic iron-oxide nanoparticles coated with silica and conjugated with linoleic acid: Effect on tumor cell growth and viability. Materials Science & Engineering. C, Materials for Biological Applications, 76, 439–447.

    Article  CAS  Google Scholar 

  18. Klein, S., Kızaloğlu, M., Portilla, L., Park, H., Rejek, T., Hümmer, J., et al. (2018). Enhanced in vitro biocompatibility and water dispersibility of magnetite and cobalt ferrite nanoparticles employed as ROS formation enhancer in radiation cancer therapy. Small, 14(21), e1704111.

    Article  Google Scholar 

  19. Zhang, Z. Q., & Song, S. C. (2017). Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy. Biomaterials, 132, 16–27.

    Article  CAS  Google Scholar 

  20. Babincová, M., Vrbovská, H., Sourivong, P., Babinec, P., & Durdík, Š. (2018). Application of albumin-embedded magnetic nanoheaters for release of etoposide in integrated chemotherapy and hyperthermia of U87-MG glioma cells. Anticancer Research, 38(5), 2683–2690.

    PubMed  Google Scholar 

  21. Do, T. D., Ul Amin, F., Noh, Y., Kim, M. O., & Yoon, J. (2016). Guidance of magnetic nanocontainers for treating Alzheimer’s disease using an electromagnetic, targeted drug-delivery actuator. Journal of Biomedical Nanotechnology, 12(3), 569–574.

    Article  CAS  Google Scholar 

  22. Williams, J. P., Southern, P., Lissina, A., Christian, H. C., Sewell, A. K., Phillips, R., et al. (2013). Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity. International Journal of Nanomedicine, 8, 2543–2554.

    Article  Google Scholar 

  23. de Toledo, L. A. S., Rosseto, H. C., & Bruschi, M. L. (2018). Iron oxide magnetic nanoparticles as antimicrobials for therapeutics. Pharmaceutical Development and Technology, 23(4), 316–323.

    Article  Google Scholar 

  24. Magro, M., Baratella, D., Bonaiuto, E., de A Roger, J., & Vianello, F. (2018). New perspectives on biomedical applications of iron oxide nanoparticles. Current Medicinal Chemistry, 25(4), 540–555.

    Article  CAS  Google Scholar 

  25. Seth, A., Park, H. S., & Hong, K. S. (2017). Current perspective on in vivo molecular imaging of immune cells. Molecules, 22(6), E881. https://doi.org/10.3390/molecules22060881.

    Article  CAS  PubMed  Google Scholar 

  26. Belyanina, I., Kolovskaya, O., Zamay, S., Gargaun, A., Zamay, T., & Kichkailo, A. (2017). Targeted magnetic nanotheranostics of cancer. Molecules, 22(6), E975.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

None.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wiwanitkit, V. (2019). Surface Modification of Magnetic Nanoparticles in Biomedicine. In: Pathak, Y. (eds) Surface Modification of Nanoparticles for Targeted Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-030-06115-9_7

Download citation

Publish with us

Policies and ethics