Skip to main content

Use of Ion-Exchange Resin in Reactive Separation

  • Chapter
  • First Online:
  • 996 Accesses

Abstract

In the last few years, we have seen a dramatic increase in the application of reactive separation processes to various fields including pharmaceutical, chemical, biochemical, agrochemical, petrochemicals, fragrances, food and biotechnology industries. Reactive separation process synchronizes the reaction and separation processes in a single reactor. Usually, the separation processes were performed in different columns for reaction followed by separation. The key players of these reactive separation processes are heterogeneous catalysts, among which ion-exchange resins are most promising, efficient and economical. The use of ion-exchange resins not only overcome the problems associated with conventional separation technologies but also become an economical and flexible choice. This chapter introduces the conceptual understanding of reactive separation processes such as reactive distillation, reactive extraction, reactive chromatography and reactive absorption in different areas and the use of ion-exchange resin in these processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Leet WA, Kulprathipanja S (2002) Reactive separation processes. Taylor & Francis: New York, pp 1–10

    Google Scholar 

  2. Shah BH et al (2014) Recent trends in reactive separation technology. In: 10th Annual Session of Students’ Chemical Engineering Congress (SCHEMCON–2014). https://doi.org/10.13140/2.1.1957.7927

  3. Kiss AA (2014) Process intensification technologies for biodiesel production: reactive separation processes. Springer Science & Business Media, pp 25–27

    Google Scholar 

  4. Kiss AA, Bildea CS (2012) A review of biodiesel production by integrated reactive separation technologies. J Chem Technol Biotechnol 87(7):861–879

    Article  CAS  Google Scholar 

  5. Mahajani SM, Saha B (2015) Catalyst in multifunctional reactors. Walter de Gruyter GmbH & Co KG pp 1–10

    Google Scholar 

  6. Neumann Ronny, Sasson Yoel (1984) Recovery of dilute acetic acid by esterification in a packed chemorectification column. Ind Eng Chem Process Des Dev 23(4):654–659

    Article  CAS  Google Scholar 

  7. Choi JI, Hong WH (1999) Recovery of lactic acid by batch distillation with chemical reactions using ion exchange resin. J Chem Eng Jpn 32(2):184–189

    Article  CAS  Google Scholar 

  8. Gadewar Sagar B, Malone Michael F, Doherty Michael F (2002) Feasible region for a countercurrent cascade of vapor-liquid CSTRS. AIChE J 48(4):800–814

    Article  CAS  Google Scholar 

  9. Brehelin M et al (2007) Production of n-propyl acetate by reactive distillation: experimental and theoretical study. Chem Eng Res Des 85(1):109–117

    Article  CAS  Google Scholar 

  10. Xia H et al (2017) Design and control of entrainer-assisted reactive distillation for N-propyl propionate production. Comput Chem Eng 106, 559–571

    Article  CAS  Google Scholar 

  11. Zeng KL, Kuo CL, Chien IL (2006) Design and control of butyl acrylate reactive distillation column system. Chem Eng Sci 61(13): 4417–4431

    Article  CAS  Google Scholar 

  12. Okon E, Habiba S, Gobina E (2015) Batch process esterification of lactic acid catalysed by cation-exchange resins for the production of environmental-friendly solvent

    Google Scholar 

  13. Aiouache Farid, Goto Shigeo (2003) Reactive distillation–pervaporation hybrid column for tert-amyl alcohol etherification with ethanol. Chem Eng Sci 58(12):2465–2477

    Article  CAS  Google Scholar 

  14. Metkar PS et al (2015) Reactive distillation process for the production of furfural using solid acid catalysts. Green Chem 17(3):1453–1466

    Article  CAS  Google Scholar 

  15. Ciric Amy R, Miao Peizhi (1994) Steady state multiplicities in an ethylene glycol reactive distillation column. Ind Eng Chem Res 33(11):2738–2748

    Article  CAS  Google Scholar 

  16. Agirre I et al (2011) Catalytic reactive distillation process development for 1,1 diethoxy butane production from renewable sources. Biores Technol 102(2):1289–1297

    Article  CAS  Google Scholar 

  17. Dhale AD et al (2004) Propylene glycol and ethylene glycol recovery from aqueous solution via reactive distillation. Chem Eng Sci 59(14):2881–2890

    Article  CAS  Google Scholar 

  18. Podrebarac GG, Ng FTT, Rempel GL (1998) The production of diacetone alcohol with catalytic distillation: part I: catalytic distillation experiments. Chem Eng Sci 53(5):1067–1075

    Article  CAS  Google Scholar 

  19. Müller D, Schäfer JP, Leimkühler HJ (2001) The economic potential of reactive distillation processes exemplified by silane production. In: Proceedings of the GVC, DECHEMA and EFCE meeting on distillation, absorption and extraction, Bamberg, Germany, 2001

    Google Scholar 

  20. Li Xue-Gang, Huang Xun, Xiao Wen-De (2017) Reactive distillation-aided ultrapure silane production from trichlorosilane: process simulation and optimization. Ind Eng Chem Res 56(7):1731–1738

    Article  CAS  Google Scholar 

  21. Fuchigami Yoshio (1990) Hydrolysis of methyl acetate in distillation column packed with reactive packing of ion exchange resin. J Chem Eng Jpn 23(3):354–359

    Article  CAS  Google Scholar 

  22. Kirbaşlar Şİ, Baykal ZB, Dramur U (2001) Esterification of acetic acid with ethanol catalysed by an acidic ion-exchange resin. Turkish J Eng Environ Sci 25(6):569–578

    Google Scholar 

  23. Agirre I et al (2011) Catalytic reactive distillation process development for 1,1 diethoxy butane production from renewable sources. Biores Technol 102(2):1289–1297

    Article  CAS  Google Scholar 

  24. Lode F et al (2001) Continuous reactive chromatography. Chem Eng Sci 56(2):269–291

    Article  CAS  Google Scholar 

  25. Sundmacher K, Kienle A, Seidel-Morgenstern A (eds) (2006) Integrated chemical processes: synthesis, operation, analysis and control. Wiley, Weinheim, pp 183–185

    Google Scholar 

  26. Reddy Bhoja, Mahajani Sanjay (2014) Feasibility of reactive chromatography for the synthesis of n-propyl acetate. Ind Eng Chem Res 53(4):1395–1403

    Article  CAS  Google Scholar 

  27. Gyani VC, Mahajani S (2008) Reactive chromatography for the synthesis of 2-ethylhexyl acetate. Sep Sci Technol 43(9–10):2245–2268

    Article  CAS  Google Scholar 

  28. Oh J et al (2016) Transesterification of propylene glycol methyl ether in chromatographic reactors using anion exchange resin as a catalyst. J Chromatogr A1466 84–95

    Article  CAS  Google Scholar 

  29. Li Y et al (2012) Separation of 2,3-butanediol from fermentation broth by reactive-extraction using acetaldehyde-cyclohexane system. Biotechnology and bioprocess engineering 17(2):337–345

    Article  CAS  Google Scholar 

  30. Malinowski Janusz J (2000) Reactive extraction for downstream separation of 1, 3-propanediol. Biotechnol Prog 16(1):76–79

    Article  CAS  Google Scholar 

  31. Ramaswamy S, Huang HJ, Ramarao BV (eds) (2013) Separation and purification technologies in biorefineries. Wiley, Chichester, pp 467–484

    Google Scholar 

  32. Tesser R et al (2010) Absorption of water/methanol binary system on ion-exchange resins. The Canadian Journal of Chemical Engineering 88(6):1044–1053

    Article  CAS  Google Scholar 

  33. Wawrzkiewicz Monika, Hubicki Zbigniew (2015) Anion exchange resins as effective sorbents for removal of acid, reactive, and direct dyes from textile wastewaters. Ion Exchange-Studies and Applications, InTech

    Book  Google Scholar 

  34. Quinn R (2003) Ion exchange resins as reversible acid gas absorbents. Sep Sci Technol 38(14):3385–3407

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Kuddus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, N., Kuddus, M. (2019). Use of Ion-Exchange Resin in Reactive Separation. In: Inamuddin, Rangreez, T., M. Asiri, A. (eds) Applications of Ion Exchange Materials in Chemical and Food Industries. Springer, Cham. https://doi.org/10.1007/978-3-030-06085-5_6

Download citation

Publish with us

Policies and ethics