Skip to main content

Ion Exchange Chromatography for Enzyme Immobilization

  • Chapter
  • First Online:
Applications of Ion Exchange Materials in Biomedical Industries

Abstract

The use of ion-exchange materials for separation and purification of proteins is a widely studied and applied tool since the twentieth century. Following the same basic principle of charge interactions, new applications for ion-exchange materials have emerged in recent decades. Enzymatic immobilization technology is one of the most promising applications in terms of bioconversion processes. The main current demands of the biotechnology industries that use enzymatic catalysis in conversion processes are the increase in productivity and reduction of overall costs. These needs can be met mainly by optimizing the enzymatic properties provided by enzyme immobilization in several carrier/materials. Enzymatic immobilization in ion-exchange materials is exceptionally simpler when compared to other immobilization methods. It basically involves electrostatic/ionic interactions of weak nature between protein and resin. These weak interactions generate minimal conformational changes, improving enzyme chemical and physical stabilities, and increases specificity, enzyme selectivity, and catalytic activities. All these advantages make this application more attractive to industry. However, much research and incentives are still needed to make this technology more robust, efficient and widespread in several industrial sectors. This chapter pays particular attention to ion-exchange chromatography as a robust tool to improve enzyme immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Homaei AA, Sairi R, Vianello F, Stevanato R (2013) Enzyme immobilization: an update. J Chem Biol 6:185–205

    Article  Google Scholar 

  2. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 49:1289–1307

    Article  Google Scholar 

  3. Hettiarachchy NS, Feliz DJ, Edwards JS, Horax R (2018) The use of immobilized enzymes to improve functionality. In: Richey YY (ed) Proteins in food processing, 2nd edn. Woodhead Pub, Duxford p, pp 569–597

    Chapter  Google Scholar 

  4. Moehlenbrock MJ, Minteer SD (2017) In: Minteer S (ed) Introduction to the field of enzyme immobilization and stabilization. Humana Press, New York p, pp 1–7

    Google Scholar 

  5. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 209:258–268

    Article  Google Scholar 

  6. Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. Biotech 3:1–9

    Google Scholar 

  7. Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization-Aqueous and non-aqueous environment. Process Biochem 10:101910–101932

    Google Scholar 

  8. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  9. Leresche JE, Meyer HP (2006) Chemocatalysis and biocatalysis (biotransformation): some thoughts of a chemist and a biotechnologist. Org Process Res Dev 10:572–580

    Article  CAS  Google Scholar 

  10. Es I, Vieira JDG, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99:2065–2082

    Article  CAS  Google Scholar 

  11. Wang L, Wei L, Chen Y, Jiang R (2010) Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. J Biotechnol 150:57–63

    Article  Google Scholar 

  12. Kim JB, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    Article  CAS  Google Scholar 

  13. Straaathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformation. Curr Opin Biotechnol 13:548–556

    Article  Google Scholar 

  14. Vaz RP, Moreira LRS, Filho EXF (2016) An overview of hollocelulase-degrading enzyme immobilization for use in bioethanol production. J Mol Catal B Enzym 133:127–135

    Article  CAS  Google Scholar 

  15. Ligler FS, Taitt CR (2008) Optical biosensors: today and tomorrow. Elsevier, Amsterdam

    Google Scholar 

  16. Khan AA, Alzohairy MA (2010) Recent advances and applications of immobilize enzymes technologies: a review. RJBSI 10:564–575

    Google Scholar 

  17. Gomes-Ruffi CR, Henrique R, Chang YK, Steel JK (2012) Effect of the emulsifier sodium steraoyl lactylate and of the enzyme maltogenic amylose on the quality of pan bread during storage. LWT-Food Sci Technol 49:96–101

    Article  CAS  Google Scholar 

  18. Singh RK, Tiwari MK, Singh R, Lee J (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14:1232–1277

    Article  CAS  Google Scholar 

  19. Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev 42:6236–6249

    Article  CAS  Google Scholar 

  20. Gray CJ, Weissenborn MJ, Eyers CE, Plitsch SL (2013) Enzymatic reactions on immobilized substrates. Chem Soc Rev 42:6378–6405

    Article  CAS  Google Scholar 

  21. DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474

    Article  CAS  Google Scholar 

  22. Cho GH, Cha YC, Yang DC, Moon HH (1981) Continuous ethanol production by immobilized yeast in a fluidized reactor. Biotechnol Lett 11:667–671

    Article  Google Scholar 

  23. Singh BD (ed) (2009) Biotechnology expanding horizons. Kalyani Pub, Delhi

    Google Scholar 

  24. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 49:1289–1307

    Article  Google Scholar 

  25. Arora DK (ed) (2003) Handbook of fungal biotechnology. CRC Press, Delhi

    Google Scholar 

  26. Panesar PS, Marwaha SS, Chopra HK (eds) (2010) Enzymes in food processing: fundamentals and potential applications. I K International Pvt Ltd, Delhi

    Google Scholar 

  27. Ayala M, Horjales E, Pickard MA, Vazquez-Duhault R (2002) Cross-linked crystals of chloroperoxidase. Biochem Biophys Res Commun 295:828–831

    Article  CAS  Google Scholar 

  28. Kök FN, Bozoglu F, Hasirci V (2001) Immobilization of acetylcholinesterase and choline oxidase in/on pHEMA membrane for biosensor construction. J Biomater Sci Polym 11:1161–1176

    Article  Google Scholar 

  29. Hwang ET, Gu MB (2013) Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 13:49–61

    Article  CAS  Google Scholar 

  30. Taitt CR, Shriver-Lake LC, Anderson GP, Ligler FS (2011) Surface modification and biomolecule immobilization on polymer spheres for biosensing applications. Methods Mol Biol 726:77–94

    Article  CAS  Google Scholar 

  31. Cao L (ed) (2006) Carrier-bound immobilized enzymes: principles, applications and design. John Wiley and Sons Inc, Weinheim

    Google Scholar 

  32. Hernandez K, R (2011) Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb Technol 48:107–122

    Article  CAS  Google Scholar 

  33. Ribeiro RR, Vitolo M (2005) Anion exchange resin as support for invertase immobilization. J Basic App Pharm Sci 26:175–179

    CAS  Google Scholar 

  34. Williams A, Frasca V (2001) Ion-exchange chromatography. In: Coligan JE (ed) Current protocols in protein science. John Wiley and Sons Inc, Weinheim

    Google Scholar 

  35. Fan J, Luo J, Wan Y (2017) Membrane chromatography for fast enzyme purification, immobilization and catalysis: a renewable biocatalytic membrane. J Memb Sci 538:68–76

    Article  CAS  Google Scholar 

  36. Rao CS (2001) Purification of large proteins using ion-exchange membranes. Process Biochem 37:247–256

    Article  CAS  Google Scholar 

  37. Fuentes M, Pessela BCC, Maquiese JV, Ortiz C, Segura RL, Palomo JM, Abian O, Torres R, Mateo C, Fernandez-Lafuente R, Guisán JM (2004) Reversible and strong immobilization of proteins by ionic exchange on supports coated with sulfate-dextran. Biotechnol Prog 20:1134–1139

    Article  CAS  Google Scholar 

  38. Tomotani EJ, Vitolo M (2006) Method for immobilizing invertase by adsorption on Dowex® anionic exchange resin. Braz J Pharm Sci 42:245–249

    CAS  Google Scholar 

  39. Garcia-Galan C, Murcia AB, Fernandez-Lafuente R, Rodrigues RC (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal 353:2885–2904

    Article  CAS  Google Scholar 

  40. Tong XD, Dong XY, Sun Y (2002) Lysozyme adsorption and purification byexpanded bed chromatography with a small-sized dense adsorbent. Biochem Eng J 12:117–124

    Article  CAS  Google Scholar 

  41. Lyddiatt A (2002) Process chromatography: current constraints and future optionsfor the adsorptive recovery of bioproducts. Curr Opin Biotechnol 13:95–103

    Article  CAS  Google Scholar 

  42. Marquez LDS, Cabral BV, Freitas FF, Cardoso VL, Ribeiro EJ (2008) Optimization of invertase immobilization by adsorption in ionic exchange resin for sucrose hydrolysis. J Mol Catal B Enzym 51:86–92

    Article  CAS  Google Scholar 

  43. Gupta K, Jana AK, Kumar S, Maiti M (2013) Immobilization of a-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration. Bioprocess Biosyst Eng 36:1715–1724

    Article  CAS  Google Scholar 

  44. Kikani BA, Pandey S, Singh SP (2012) Immobilization of the α-amylase of Bacillus amyloliquifaciens TSWK1-1 for the improved biocatalytic properties and solvent tolerance. Bioprocess Biosyst Eng 36:567–577

    Article  Google Scholar 

  45. Zaak H, Peirce S, Albuquerque TL, Sassi M, Fernadez-Lafuente R (2017) Exploiting the versatility of aminated supports activated with glutaraldehyde to Immobilize β-galactosidase from Aspergillus oryzae. Catalysts 7(250):1–14

    Google Scholar 

  46. Guidini CZ, Fischer J, Santana LNS, Cardoso VL, Ribeiro EJ (2010) Immobilization of Aspergillus oryzae β-galactosidase in ion exchange resins by combined ionic-binding method and cross-linking. Biochem Eng J 52:137–143

    Article  CAS  Google Scholar 

  47. Guidini CZ, Fischer J, Resende MM, Cardoso VL, Ribeiro EJ (2011) β-galactosidase of Aspergillus oryzae immobilized in an ion exchange resin combining the ionic-binding and crosslinking methods: kinetics and stability during the hydrolysis of lactose. J Mol Catal B Enzym 71:139–145

    Article  CAS  Google Scholar 

  48. Godfrey T, West S (eds) (1996) Industrial enzymology. Macmillan, New York

    Google Scholar 

  49. Li Y, Fan Y, Ma J (2001) Thermal, physical and chemical stability of porous polyestyrene-type beads with different degrees of crosslinking. Polym Degrad Stab 73:163–167

    Article  CAS  Google Scholar 

  50. Albuquerque TL, Peirce S, Rueda N, Marzocchella A, Gonçalves LRB, Rocha MVB, Fernandez-Lafuente R (2016) Ion exchange of β-galactosidase: the effect of the immobilization pH on enzyme stability. Process Biochem 51:875–880

    Article  Google Scholar 

  51. Yan Y, Zhang X, Chen D (2013) Enhanced catalysis of Yarrowia lipolytica lipase LIP2 immobilized on macroporous resin and its application in enrichment of polyunsaturated fatty acids. Bioresour Technol 131:179–187

    Article  CAS  Google Scholar 

  52. Benassi VM, Silva TM, Pessela BC, Guisan JM, Mateo C, Lima MS, Jorge JA, Polizeli MLTM (2013) Immobilization and biochemical properties of a β-xylosidase activated by glucose/xylose from Aspergillus niger USP-67 with transxylosylation activity. J Mol Catal B Enzym 89:93–101

    Article  CAS  Google Scholar 

  53. Karboune S, Archelas A, Furstoss R, Baratti J (2005) Immobilization of epoxide hydrolase from Aspergillus niger onto DEAE-cellulose: enzymatic properties and application for the enantioselective resolution of a racemic epoxide. J Mol Catal B Enzym 32:175–183

    Article  CAS  Google Scholar 

  54. Huitron C, Limon-Lason J (1978) Immobilization of glucose isomerase to ion-exchange materials. Biotechnol Bioeng 4:1377–1391

    Article  Google Scholar 

  55. Al-Hakeim HK, Al-Shams JK, Kadhem MA (2012) Immobilization of Urease enzyme on ion-exchange resin. Pur Appl Sci 20:1231–1236

    Google Scholar 

  56. Shi L, Yi Y, Tang Z, Xiong W, Mei J, Ying G (2010) Nuclease p1 immobilized on DEAE cellulose. Braz J Chem Eng 27:31–39

    Article  CAS  Google Scholar 

  57. Ohmiya K, Tanimura S, Kobayashi T, Shimizu (1978) Preparation and properties of proteases immobilized on anion exchange resin with glutaraldehyde. Biotechnol Bioeng 1–15

    Article  CAS  Google Scholar 

  58. Lee NE, Woodward J (1989) Kinetics of the adsorption of Trichoderma reesei C30 cellulase to DEAE-Macrosorb. J Biotechnol 11:75–82

    Article  CAS  Google Scholar 

  59. Filho M, Pessela BC, Mateo C, Carrascosa AV, Fernandez- Lafuente R, Guisan JM (2008) Reversible immobilization of a hexameric a-galactosidase from Thermus sp. strain T2 on polymeric ionic exchangers. Process Biochem 43:1142–1146

    Article  CAS  Google Scholar 

  60. Demir N, Acar J, Sarioglu K, Mutlu M (2001) The use of commercial pectinase in fruit juice industry. Part 3: immobilized pectinase for mash treatment. J Food Eng 47:275–280

    Article  Google Scholar 

  61. Gürdaş S, Güleç HA, Mutlu M (2012) Immobilization of Aspergillus oryzae β-Galactosidase onto Duolite A568 resin via simple adsorption mechanism. Food Bioprocess Technol 904–911

    Article  Google Scholar 

  62. Kiba N, Ishida Y, Tsuchiya M, Furusawa M (1983) Use of an immobilized glucose oxidase cation-exchange resin column in the determination of glucose. Talanta 30(3):187–189

    Article  CAS  Google Scholar 

  63. Mayer J, Kranz B, Fischer L (2010) Continuous production of lactulose by immobilized thermostable β-glycosidase from Pyrococcus furiosus. J Biotech 145:387–393

    Article  CAS  Google Scholar 

  64. Takimoto A, Takakura T, Tani H, Yagi S, Mitsushima K (2004) Batch production of deacetyl 7-aminocephalosporanic acid by immobilized cephalosporin-C deacetylase. Appl Microbiol Biotechnol 65:263–267

    Article  CAS  Google Scholar 

  65. Aguilar CN, Gutiérrez-Sánchez G (2004) Review: sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci Techol Int 7:373–382

    Article  Google Scholar 

  66. Lekha PK, Lonsane BK (1997) Production and application of tannin acyl hydrolase: state of the art. Adv Appl Microbiol 44:215–260

    Article  CAS  Google Scholar 

  67. Gonçalves HB, Jorge JA, Pessela BC, Lorente GF, Guisán JM, Guimarães LHS (2013) Characterization of a tannase from Emericela nidulans immobilized on ionic and covalent supports for propyl gallate synthesis. Biotechnol Lett 35:591–598

    Article  Google Scholar 

  68. Li X, He X, Li Z, Wang Y, Wang C, Shi H, Wang F (2012) Enzymatic production of biodiesel from Pistacia chinensis bge seed oil using immobilized lipase. Fuel 92:89–93

    Article  CAS  Google Scholar 

  69. Cao L, Schmid RD (2005) Carrier-bound immobilized enzymes: principles. Application and Design, Wiley-VCH, Weinheim

    Book  Google Scholar 

  70. Torres-Salas P, Monte-Martinez A, Cutiño-Avila B, Rodriguez-Colinas B, Alcalde M, Ballesteros AO, Plou JF (2011) Immobilized biocatalysts: novel approaches and tools for binding enzymes to supports. Adv Mater 23:5275–5282

    Article  CAS  Google Scholar 

  71. Zaak H, Kornecki JF, Siar E, Fernandez-Lopez L, Corberán VC, Sassi A, Fernandez-Lafuente R (2017) Coimmobilization of enzymes in bilayers using PEI as a glue to reuse the most stable enzyme: preventing PEI release during inactivated enzyme desorption. Process Biochem 61:95–110

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edivaldo Ximenes Ferreira Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaz, R.P., Filho, E.X.F. (2019). Ion Exchange Chromatography for Enzyme Immobilization. In: Inamuddin (eds) Applications of Ion Exchange Materials in Biomedical Industries. Springer, Cham. https://doi.org/10.1007/978-3-030-06082-4_2

Download citation

Publish with us

Policies and ethics