Skip to main content

Extracorporeal Cytokine Removal in Septic Shock

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2019

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 1716 Accesses

Abstract

The incidence of sepsis has increased over the decades and it seems to be the single most important cause of hospitalization, which makes it a serious health economic issue worldwide [1–3]. Despite recent advances in early recognition, adequate resuscitation, organ support, appropriate antibiotic therapy and source control, mortality rates are still around 20–50% depending on the source of the data [4, 5]. One of the more theoretical approaches to improve outcomes is the modulation of the immune system and the host response, which has been in the spotlight of research for decades. Hitherto, anti-inflammatory therapies, such as anti-cytokines, anti-oxidants, etc., have been tested, but the results disappointing [6, 7]. Nevertheless, modulating the “cytokine storm” that occurs in the early phase of septic shock as a result of a dysregulated immune response could provide some benefits by regaining the control between a pro-inflammatory and anti-inflammatory imbalance [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000–2012. JAMA. 2014;311:1308.

    Google Scholar 

  2. Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013;41:1167–74.

    Article  Google Scholar 

  3. Torio CM, Andrews RM (2013) National inpatient hospital costs: the most expensive conditions by payer. HCUP Statistical Brief #160. Agency for Healthcare Research and Quality, Rockville, MD. http://www.hcup-us.ahrq.gov/reports/statbriefs/sb160.pdf. Accessed 16 Nov 2018.

  4. ProCESS Investigators. A randomized trial of protocol-based care for early septic shock. Process trial. N Engl J Med. 2014;370:1–11.

    Article  Google Scholar 

  5. Thiel P, Schmidt K, Mueller F, Ludewig K, Brunkhorst F, Gensichen J. The Jena Sepsis Registry: a prospective observational registry for patients with severe sepsis or septic shock, supported by primary care. Infection. 2011;39:S138–9.

    Google Scholar 

  6. Alejandria M, Lansang M, Dans L, Mantaring JB III. Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst Rev. 2013:CD001090.

    Google Scholar 

  7. Szakmany T, Hauser B, Radermacher P. N-acetylcysteine for sepsis and systemic inflammatory response in adults. Cochrane Database Syst Rev. 2012:CD006616.

    Google Scholar 

  8. Lukaszewicz AC, Payen D. Purification methods: a way to treat severe acute inflammation related to sepsis? Crit Care. 2013;17:3–4.

    Article  Google Scholar 

  9. Harder J, Schröder JM, Gläser R. The skin surface as antimicrobial barrier: present concepts and future outlooks. Exp Dermatol. 2013;22:1–5.

    Article  CAS  Google Scholar 

  10. Baroni A, Buommino E, De Gregorio V, Ruocco E, Ruocco V, Wolf R. Structure and function of the epidermis related to barrier properties. Clin Dermatol. 2012;30:257–62.

    Article  Google Scholar 

  11. Rudraraju R, Jones BG, Surman SL, Sealy RE, Thomas PG, Hurwitz JL. Respiratory tract epithelial cells express retinaldehyde dehydrogenase ALDH1A and enhance IgA production by stimulated B cells in the presence of vitamin A. PLoS One. 2014;9:1–10.

    Article  Google Scholar 

  12. Pelaseyed T, Bergström JH, Gustafsson JK, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract. Immunol Rev. 2014;260:8–20.

    Article  CAS  Google Scholar 

  13. Ghosh M. Secreted mucosal antimicrobials in the female reproductive tract that are important to consider for HIV prevention. Am J Reprod Immunol. 2014;71:575–88.

    Article  CAS  Google Scholar 

  14. Kompoti M, Michopoulos A, Michalia M, Clouva-Molyvdas PM, Germenis AE, Speletas M. Genetic polymorphisms of innate and adaptive immunity as predictors of outcome in critically ill patients. Immunobiology. 2015;220:414–21.

    Article  CAS  Google Scholar 

  15. Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7.

    Article  CAS  Google Scholar 

  16. Sompayrac l. How the immune system works. Chichester: Wiley-Blackwell; 2012.

    Google Scholar 

  17. Ferrara J, Abhyankar S, Gilliland D. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc. 1993;25:1216–7.

    CAS  PubMed  Google Scholar 

  18. Trásy D, Tánczos K, Németh M, et al. Early procalcitonin kinetics and appropriateness of empirical antimicrobial therapy in critically ill patients. A prospective observational study. J Crit Care. 2016;34:50–5.

    Article  Google Scholar 

  19. László I, Trásy D, Molnár Z, Fazakas J. Sepsis: from pathophysiology to individualized patient care. J Immunol Res. 2015;2015:510436.

    Article  Google Scholar 

  20. Nakada T, Oda S, Matsuda K, et al. Continuous hemodiafiltration with PMMA hemofilter in the treatment of patients with septic shock. Mol Med. 2008;14:257–63.

    Google Scholar 

  21. Honore PM, Jamez J, Wauthier M, et al. Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med. 2000;28:3581–7.

    Article  CAS  Google Scholar 

  22. Peng Z, Simon P, Rimmelé T, Clermont G, Kellum JA. Blood purification in sepsis: a new paradigm. Contrib Nephrol. 2010;65:322–8.

    Article  Google Scholar 

  23. Rimmelé T, Kellum JA. Clinical review: blood purification for sepsis. Crit Care. 2011;15:1–10.

    Google Scholar 

  24. Cole L, Bellomo R, Journois D, Davenport P, Baldwin I, Tipping P. High-volume haemofiltration in human septic shock. Crit Care Med. 2001;27:978–86.

    CAS  Google Scholar 

  25. Joannes-Boyau O, Bagshaw SM, Dewitte A, Spapen HD, Ouattara A. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med. 2013;39:1535–46.

    Article  Google Scholar 

  26. Vincent J, Cohen J, Burchardi H, et al. A pilot-controlled study of a polymyxin B-immobilized hemoperfusion cartridge in patients with severe sepsis secondary to intra-abdominal infection. Shock. 2005;23:400–5.

    Article  CAS  Google Scholar 

  27. Cruz DN, Antonelli M, Fumagalli R, et al. Early use of polymyxin b hemoperfusion in abdominal septic shock. JAMA. 2009;301:2445.

    Article  CAS  Google Scholar 

  28. Payen DM, Lukaszewicz AC, Joannes-boyau O, Martin-lefevre L, Kipnis E. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med. 2015;41:975–84.

    Article  CAS  Google Scholar 

  29. Coudroy R, Payen D, Launey Y, et al. Modulation by polymyxin-B hemoperfusion of inflammatory response related to severe peritonitis. Shock. 2017;47:93–9.

    Article  CAS  Google Scholar 

  30. Dellinger RP, Levy MM, Opal SM, et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012. Intensive Care Med. 2013;39:165–228.

    Article  CAS  Google Scholar 

  31. Cytosorbent Corporation. CytoSorb fields of application. http://cytosorb-therapy.com/the-therapy/fields-of-application. Accessed 18 Nov 2018.

  32. Bonavia A, Karamchandani K. Clinical utility of extracorporeal cytokine hemoadsorption therapy : a literature review. Blood Purif. 2018;17033:337–49.

    Article  Google Scholar 

  33. Taniguchi T. Cytokine adsorbing columns. Contrib Nephrol. 2010;166:134–41.

    Article  CAS  Google Scholar 

  34. Kogelmann K, Jarczak D, Scheller M, Drüner M. Hemoadsorption by CytoSorb in septic patients: a case series. Crit Care. 2017;21:1–10.

    Article  Google Scholar 

  35. Ronco C, Brendolan A, Dan M, et al. Adsorption in sepsis. Kidney Int. 2000;58:148–55.

    Article  Google Scholar 

  36. Peng ZY, Wang HZ, Carter MJ, et al. Acute removal of common sepsis mediators does not explain the effects of extracorporeal blood purification in experimental sepsis. Kidney Int. 2012;81:363–9.

    Article  CAS  Google Scholar 

  37. Kellum J, Kong L, Fink MP, et al. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study. Arch Intern Med. 2007;167:1655–63.

    Article  CAS  Google Scholar 

  38. Frimmel S, Schipper J, Henschel J, Tsui TY, Mitzner SR, Koball S. First description of single-pass albumin dialysis combined with cytokine adsorption in fulminant liver failure and hemophagocytic syndrome resulting from generalized herpes simplex virus 1 infection. Liver Transpl. 2014;20:1523–4.

    PubMed  Google Scholar 

  39. Hetz H, Berger R, Recknagel P, Steltzer H. Septic shock secondary to β-hemolytic streptococcus-induced necrotizing fasciitis treated with a novel cytokine adsorption therapy. Int J Artif Organs. 2014;37:422–6.

    Article  Google Scholar 

  40. Basu R, Pathak S, Goyal J, Chaudhry R, Goel RB, Barwal A. Use of a novel hemoadsorption device for cytokine removal as adjuvant therapy in a patient with septic shock with multi-organ dysfunction: a case study. Indian J Crit Care Med. 2014;18:822–4.

    Article  Google Scholar 

  41. Wiegele M, Krenn CG. Cytosorb™ in a patient with legionella pneumonia—associated rhabdomyolysis: a case report. ASAIO J. 2015;61:18–20.

    Article  Google Scholar 

  42. Wilhelm MJ, Pratschke J, Beato F, et al. Activation of the heart by donor brain death accelerates acute rejection after transplantation. Circulation. 2000;102:2426–33.

    Article  CAS  Google Scholar 

  43. Kellum JA, Venkataraman R, Powner D, Elder M, Hergenroeder G, Carter M. Feasibility study of cytokine removal by hemoadsorption in brain-dead humans. Crit Care Med. 2008;36:268–72.

    Article  CAS  Google Scholar 

  44. Schädler D, Pausch C, Heise D, et al. The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients: a randomized controlled trial. PLoS One. 2017;12:1–19.

    Article  Google Scholar 

  45. Öveges N, Hawchar F, László I, et al. Early cytokine adsorption in septic shock (ACESS-trial): results of a proof concept, pilot study. Crit Care. 2018;22(Suppl 1):P113. (abst)

    Google Scholar 

  46. Friesecke S, Träger K, Schittek GA, et al. International registry on the use of the CytoSorb® adsorber in ICU patients: study protocol and preliminary results. Medi Klin Intensivmed Notfallmed. 2017; Sep 4. https://doi.org/10.1007/s00063-017-0342-5. [Epub ahead of print]

  47. Becze Z, Molnár Z, Fazakas J. Can procalcitonin levels indicate the need for adjunctive therapies in sepsis ? Int J Antimicrob Agents. 2015;46:S13–8.

    Article  CAS  Google Scholar 

  48. Trásy D, Molnár Z. Procalcitonin—assisted antibiotic strategy in sepsis. EJIFCC. 2017;28:104–13.

    PubMed  PubMed Central  Google Scholar 

  49. David S, Thamm K, Schmidt BMW, Falk CS, Kielstein JT. Effect of extracorporeal cytokine removal on vascular barrier function in a septic shock patient. J Intensive Care. 2017;5:1–5.

    Article  Google Scholar 

  50. Morris C, Gray L, Giovannelli M. Early report: the use of Cytosorb TM haemabsorption column as an adjunct in managing severe sepsis: initial experiences, review and recommendations. J Intensive Care Soc. 2015;16:257–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Molnár .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hawchar, F., Öveges, N., Molnár, Z. (2019). Extracorporeal Cytokine Removal in Septic Shock. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2019. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-06067-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06067-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06066-4

  • Online ISBN: 978-3-030-06067-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics