Skip to main content

Potential Harm Related to Fluid Resuscitation in Sepsis

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2019

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

Abstract

A liberal approach to fluid resuscitation in patients with sepsis and evidence of hypoperfusion is endorsed by international guidelines as an essential first-line intervention [1]. The use of this therapy is based in part on a long history and familiarity with fluid use in the resuscitation of other forms of shock and a “hypoperfusion centric” theory of the pathophysiology of sepsis [2]. The Surviving Sepsis Campaign recommendation for a fluid challenge given at a rate of 500–1000 mL of crystalloids or 300–500 mL of colloids over 30 min, is graded as Grade E, which means it is supported only by non-randomized historical controls, case series, uncontrolled studies and expert opinion [1]. In addition to a lack of high quality randomized controlled trials (RCTs), demonstrating benefit of standard volume fluid resuscitation for sepsis compared to a lower dose, the safety of standard doses of intravenous resuscitation has also been called into question. Data from experimental, observational and prospective randomized studies suggest improved outcomes with a restrictive approach to fluid resuscitation [2–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43:304–77.

    Article  Google Scholar 

  2. Byrne L, Van Haren F. Fluid resuscitation in human sepsis: time to rewrite history? Ann Intensive Care. 2017;7:4.

    Article  Google Scholar 

  3. Maitland K, Kiguli S, Opoka RO, et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med. 2011;364:2483–95.

    Article  CAS  Google Scholar 

  4. Andrews B, Semler MW, Muchemwa L, et al. Effect of an early resuscitation protocol on in-hospital mortality among adults with sepsis and hypotension: a randomized clinical trial. JAMA. 2017;318:1233–40.

    Article  Google Scholar 

  5. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.

    Article  Google Scholar 

  6. Maitland K, George EC, Evans JA, et al. Exploring mechanisms of excess mortality with early fluid resuscitation: insights from the FEAST trial. BMC Med. 2013;11:1.

    Article  Google Scholar 

  7. Byrne L, Obonyo NG, Diab SD, et al. Unintended consequences; fluid resuscitation worsens shock in an ovine model of endotoxemia. Am J Respir Crit Care Med. 2018;198:1043–54.

    Article  CAS  Google Scholar 

  8. Byrne L, Obonyo NG, Diab S, et al. An ovine model of hyperdynamic endotoxemia and vital organ metabolism. Shock. 2017;49:99–107.

    Article  Google Scholar 

  9. Cholley BP, Lang RM, Berger DS, Korcarz C, Payen D, Shroff SG. Alterations in systemic arterial mechanical properties during septic shock: role of fluid resuscitation. Am J Phys. 1995;269:H375–84.

    CAS  Google Scholar 

  10. Ricard-Hibon A, Losser MR, Kong R, Beloucif S, Teisseire B, Payen D. Systemic pressure-flow reactivity to norepinephrine in rabbits: impact of endotoxin and fluid loading. Intensive Care Med. 1998;24:959–66.

    Article  CAS  Google Scholar 

  11. Losser MR, Forget AP, Payen D. Nitric oxide involvement in the hemodynamic response to fluid resuscitation in endotoxic shock in rats. Crit Care Med. 2006;34:2426–31.

    Article  CAS  Google Scholar 

  12. Monge García IM, González PG, Romero MG, et al. Effects of fluid administration on arterial load in septic shock patients. Intensive Care Med. 2015;41:1247–55.

    Article  Google Scholar 

  13. Pierrakos C, Velissaris D, Scolletta S, Heenen S, De Backer D, Vincent JL. Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock? Intensive Care Med. 2012;38:422–8.

    Article  Google Scholar 

  14. Monge Garcia MI, Guijo Gonzalez P, Gracia Romero M, et al. Effects of arterial load variations on dynamic arterial elastance: an experimental study. Br J Anaesth. 2017;118:938–46.

    Article  CAS  Google Scholar 

  15. Pohl U, De Wit C, Gloe T. Large arterioles in the control of blood flow: role of endothelium-dependent dilation. Acta Physiol Scand. 2000;168:505–10.

    Article  CAS  Google Scholar 

  16. Hennig T, Mogensen C, Kirsch J, Pohl U, Gloe T. Shear stress induces the release of an endothelial elastase: role in integrin alpha(v)beta(3)-mediated FGF-2 release. J Vasc Res. 2011;48:453–64.

    Article  CAS  Google Scholar 

  17. Maeder M, Fehr T, Rickli H, Ammann P. Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest. 2006;129:1349–66.

    Article  CAS  Google Scholar 

  18. Bessière F, Khenifer S, Dubourg J, Durieu I, Lega J-C. Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med. 2013;39:1181–9.

    Article  Google Scholar 

  19. Neri M, Cerretani D, Fiaschi AI, et al. Correlation between cardiac oxidative stress and myocardial pathology due to acute and chronic norepinephrine administration in rats. J Cell Mol Med. 2007;11:156–70.

    Article  CAS  Google Scholar 

  20. Haileselassie B, Su E, Pozios I, et al. Myocardial oxidative stress correlates with left ventricular dysfunction on strain echocardiography in a rodent model of sepsis. Intensive Care Med Exp. 2017;5:21.

    Article  Google Scholar 

  21. Henrich M, Gruss M, Weigand MA. Sepsis-induced degradation of endothelial glycocalix. ScientificWorldJournal. 2010;10:917–23.

    Article  CAS  Google Scholar 

  22. von Geldern TW, Budzik GP, Dillon TP, et al. Atrial natriuretic peptide antagonists: biological evaluation and structural correlations. Mol Pharmacol. 1990;38:771–8.

    Google Scholar 

  23. Bruegger D, Jacob M, Rehm M, et al. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol. 2005;289:H1993–9.

    Article  CAS  Google Scholar 

  24. Chen C, Chappell D, Annecke T, et al. Sevoflurane mitigates shedding of hyaluronan from the coronary endothelium, also during ischemia/reperfusion: an ex vivo animal study. Hypoxia (Auckl). 2016;4:81–90.

    Google Scholar 

  25. Chappell D, Bruegger D, Potzel J, et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care. 2014;18:538.

    Article  Google Scholar 

  26. Berg S, Engman A, Hesselvik JF, Laurent TC. Crystalloid infusion increases plasma hyaluronan. Crit Care Med. 1994;22:1563–7.

    Article  CAS  Google Scholar 

  27. Jacob M, Saller T, Chappell D, Rehm M, Welsch U, Becker BF. Physiological levels of A-, B-and C-type natriuretic peptide shed the endothelial glycocalyx and enhance vascular permeability. Basic Res Cardiol. 2013;108:347.

    Article  Google Scholar 

  28. Rivers EP, Kruse JA, Jacobsen G, et al. The influence of early hemodynamic optimization on biomarker patterns of severe sepsis and septic shock. Crit Care Med. 2007;35:2016–24.

    Article  Google Scholar 

  29. Dorresteijn MJ, van Eijk LT, Netea MG, Smits P, van der Hoeven JG, Pickkers P. Iso-osmolar prehydration shifts the cytokine response towards a more anti-inflammatory balance in human endotoxemia. J Endotoxin Res. 2005;11:287–93.

    Article  CAS  Google Scholar 

  30. Rhee P, Wang D, Ruff P, et al. Human neutrophil activation and increased adhesion by various resuscitation fluids. Crit Care Med. 2000;28:74–8.

    Article  CAS  Google Scholar 

  31. Lee SH, Seo EH, Park HJ, et al. The effects of crystalloid versus synthetic colloid in vitro on immune cells, co-cultured with mouse splenocytes. Sci Rep. 2018;8:4794.

    Article  Google Scholar 

  32. van Haren FM, Sleigh J, Cursons R, La Pine M, Pickkers P, van der Hoeven JG. The effects of hypertonic fluid administration on the gene expression of inflammatory mediators in circulating leucocytes in patients with septic shock: a preliminary study. Ann Intensive Care. 2011;1:44.

    Article  Google Scholar 

  33. Malbrain ML, Marik PE, Witters I, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther. 2014;46:361–80.

    Article  Google Scholar 

  34. Sadaka F, Juarez M, Naydenov S, O’Brien J. Fluid resuscitation in septic shock: the effect of increasing fluid balance on mortality. J Intensive Care Med. 2014;29:213–7.

    Article  Google Scholar 

  35. Smith SH, Perner A. Higher vs. lower fluid volume for septic shock: clinical characteristics and outcome in unselected patients in a prospective, multicenter cohort. Crit Care. 2012;16:R76.

    Article  Google Scholar 

  36. Samoni S, Vigo V, Resendiz LI, et al. Impact of hyperhydration on the mortality risk in critically ill patients admitted in intensive care units: comparison between bioelectrical impedance vector analysis and cumulative fluid balance recording. Crit Care. 2016;20:95.

    Article  Google Scholar 

  37. Prowle JR, Echeverri JE, Ligabo EV, Ronco C, Bellomo R. Fluid balance and acute kidney injury. Nat Rev Nephrol. 2010;6:107–15.

    Article  Google Scholar 

  38. Van Regenmortel N, Verbrugghe W, Roelant E, Van den Wyngaert T, Jorens PG. Maintenance fluid therapy and fluid creep impose more significant fluid, sodium, and chloride burdens than resuscitation fluids in critically ill patients: a retrospective study in a tertiary mixed ICU population. Intensive Care Med. 2018;44:409–17.

    Article  Google Scholar 

  39. Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.

    Article  CAS  Google Scholar 

  40. Hjortrup PB, Haase N, Bundgaard H, et al. Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med. 2016;42:1695–705.

    Article  Google Scholar 

  41. Hjortrup PB, Haase N, Wetterslev J, et al. Effects of fluid restriction on measures of circulatory efficacy in adults with septic shock. Acta Anaesthesiol Scand. 2017;61:390–8.

    Article  CAS  Google Scholar 

  42. Glassford NJ, Jones SL, Martensson J, et al. Characteristics and expectations of fluid bolus therapy: a bi-national survey of acute care physicians. Anaesth Intensive Care. 2015;43:750–6.

    CAS  PubMed  Google Scholar 

  43. Glassford NJ, Martensson J, Eastwood GM, et al. Defining the characteristics and expectations of fluid bolus therapy: a worldwide perspective. J Crit Care. 2016;35:126–32.

    Article  Google Scholar 

  44. Cecconi M, Hofer C, Teboul JL, et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med. 2015;41:1529–37.

    Article  Google Scholar 

  45. Glassford NJ, Eastwood GM, Bellomo R. Physiological changes after fluid bolus therapy in sepsis: a systematic review of contemporary data. Crit Care. 2014;18:696.

    Article  Google Scholar 

  46. Ho L, Lau L, Churilov L, et al. Comparative evaluation of crystalloid resuscitation rate in a human model of compensated haemorrhagic shock. Shock. 2016;46:149–57.

    Article  CAS  Google Scholar 

  47. Nunes TS, Ladeira RT, Bafi AT, et al. Duration of hemodynamic effects of crystalloids in patients with circulatory shock after initial resuscitation. Ann Intensive Care. 2014;4:25.

    Article  Google Scholar 

  48. Lammi MR, Aiello B, Burg GT, et al. Response to fluid boluses in the fluid and catheter treatment trial. Chest. 2015;148:919–26.

    Article  Google Scholar 

  49. Bihari S, Teubner DJ, Prakash S, et al. Fluid bolus therapy in emergency department patients: indications and physiological changes. Emerg Med Australas. 2016;28:531–7.

    Article  Google Scholar 

  50. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–8.

    Article  Google Scholar 

  51. Latta T. Malignant cholera: documents communicated by the Central Board of Health, London, relative to the treatment of cholera by the copious injection of aqueous and saline fluids into the veins. Lancet. 1832;18:274–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. van Haren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Haren, F., Byrne, L., Litton, E. (2019). Potential Harm Related to Fluid Resuscitation in Sepsis. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2019. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-06067-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06067-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06066-4

  • Online ISBN: 978-3-030-06067-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics