Skip to main content

Connecting Oxide Bifilms’ Properties from Atomistic Simulations with Virtual Casting of Aluminum

  • Conference paper
  • First Online:
Shape Casting

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Aluminum oxide bifilms , formed during melt turbulence flow, can have a significant detrimental effect on material properties after they are entrapped in the final cast products. Recently, molecular dynamics (MD) simulations were used to simulate the formation and fracture mechanisms of bifilms at the nano-scale, which are hard to obtain experimentally. The results showed that the fracture occurred at the Al/oxide interface instead of the oxide/oxide interface for both amorphous oxide and crystalline α-Al2O3, which represent the “young” and “old” oxides referred in aluminum casting . The fracture energy is higher for the α-Al2O3 bifilm. However, if OH-termination contamination occurs due to residue hydrogen gas and water trapped in the aluminum oxide bifilm interface, the OH-termination oxide bifilm fractured at the oxide/oxide interface and with a much-reduced fracture energy. This is consistent with the general picture that oxide bifilms will initiate cracks, especially fatigue cracks in cast aluminum products. For macroscopic models, crack initiation and propagation can be modeled by cohesive zone method. Therefore, we propose a simple size bridging relationship to connect the MD-predicted oxide bifilms fracture energy and fracture strength with future finite element modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campbell J (2003) Castings, 2nd edn. Elsevier Butterworth-Heinemann

    Google Scholar 

  2. Lovatt AM, Bassetti D, Shercliff HR, Bréchet Y (2000) Process and alloy selection for aluminium casting. Int J Cast Met Res 12:211–225. https://doi.org/10.1080/13640461.2000.11819358

    Article  Google Scholar 

  3. Lee A, Lu Y, Roche A, Pan TY (2016) Influence of nano-structured silanols on the microstructure and mechanical properties of A4047 and A359 aluminum casting alloys. Int J Met 10:322–328. https://doi.org/10.1007/s40962-016-0044-4

    Article  CAS  Google Scholar 

  4. Sigworth GK (2008) The modification of Al–Si casting alloys: important practical and theoretical aspects. Int J Met 2:19–40. https://doi.org/10.1007/BF03355425

    Article  CAS  Google Scholar 

  5. Cao X, Campbell J (2005) Oxide inclusion defects in Al–Si–Mg cast alloys. Can Metall Q 44:435–448. https://doi.org/10.1179/cmq.2005.44.4.435

    Article  CAS  Google Scholar 

  6. Campbell J (2017) Melting, remelting, and casting for clean steel. Steel Res Int 88:1600093. https://doi.org/10.1002/srin.201600093

    Article  Google Scholar 

  7. Campbell J (2016) The consolidation of metals: the origin of bifilms. J Mater Sci 51:96–106. https://doi.org/10.1007/s10853-015-9399-9

    Article  CAS  Google Scholar 

  8. Wang QG, Davidson CJ, Griffiths JR, Crepeau PN (2006) Oxide films, pores and the fatigue lives of cast aluminum alloys. Metall Mater Trans B 37:887–895. https://doi.org/10.1007/BF02735010

    Article  Google Scholar 

  9. Campbell J (2017) Melting, remelting, and casting for clean steel. Steel Res Int 88:1600093. https://doi.org/10.1002/srin.201600093

    Article  CAS  Google Scholar 

  10. Wang QG, Apelian D, Lados DA (2001) Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects. J Light Met 1:73–84. https://doi.org/10.1016/S1471-5317(00)00008-0

    Article  CAS  Google Scholar 

  11. Mitrasinovic A, Robles Hernández FC, Djurdjevic M, Sokolowski JH (2006) On-line prediction of the melt hydrogen and casting porosity level in 319 aluminum alloy using thermal analysis. Mater Sci Eng A 428:41–46. https://doi.org/10.1016/j.msea.2006.04.084

    Article  CAS  Google Scholar 

  12. Digne M, Sautet P, Raybaud P et al (2002) Hydroxyl groups on gamma-alumina surfaces: a DFT study. J Catal 211:1–5. https://doi.org/10.1016/S0021-9517(02)93741-3

    Article  CAS  Google Scholar 

  13. Sharma PK, Jilavi MH, Burgard D et al (1998) Hydrothermal synthesis of nanosize alpha-Al2O3 from seeded aluminum hydroxide. J Am Ceram Soc 81:2732–2734. https://doi.org/10.1111/j.1151-2916.1998.tb02687.x

    Article  CAS  Google Scholar 

  14. Calvié E, Réthoré J, Joly-Pottuz L et al (2014) Mechanical behavior law of ceramic nanoparticles from transmission electron microscopy in situ nano-compression tests. Mater Lett 119:107–110. https://doi.org/10.1016/j.matlet.2014.01.002

    Article  CAS  Google Scholar 

  15. Calvié E, Joly-Pottuz L, Esnouf C et al (2012) Real time TEM observation of alumina ceramic nano-particles during compression. J Eur Ceram Soc 32:2067–2071. https://doi.org/10.1016/j.jeurceramsoc.2012.02.029

    Article  CAS  Google Scholar 

  16. Yang Y, Kushima A, Han W et al (2018) Liquid-like, self-healing aluminum oxide during deformation at room temperature. Nano Lett 18:2492–2497. https://doi.org/10.1021/acs.nanolett.8b00068

    Article  CAS  Google Scholar 

  17. Sen FG, Alpas AT, Van Duin ACT, Qi Y (2014) Oxidation-assisted ductility of aluminium nanowires. Nat Commun 5:3959. https://doi.org/10.1038/ncomms4959

    Article  CAS  Google Scholar 

  18. Sen FG, Qi Y, Van Duin ACT, Alpas AT (2013) Oxidation induced softening in Al nanowires. Appl Phys Lett 102:051912. https://doi.org/10.1063/1.4790181

    Article  CAS  Google Scholar 

  19. Van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409. https://doi.org/10.1021/jp004368u

    Article  CAS  Google Scholar 

  20. Chenoweth K, van Duin ACT, Goddard WA (2008) ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A 112:1040–1053. https://doi.org/10.1021/jp709896w

    Article  CAS  Google Scholar 

  21. Aktulga HM, Fogarty JC, Pandit SA, Grama AY (2012) Parallel reactive molecular dynamics: numerical methods and algorithmic techniques. Parallel Comput 38:245–259. https://doi.org/10.1016/j.parco.2011.08.005

    Article  Google Scholar 

  22. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  23. Wang XG, Smith JR, Evans A (2002) Fundamental influence of C on adhesion of the Al2O3/Al interface. Phys Rev Lett 89:286102. https://doi.org/10.1103/PhysRevLett.89.286102

    Article  CAS  Google Scholar 

  24. Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54:525. https://doi.org/10.1115/1.3173064

    Article  Google Scholar 

  25. Liu J, Huang Z, Pan Z et al (2017) Atomistic origin of deformation twinning in biomineral aragonite. Phys Rev Lett 118:105501. https://doi.org/10.1103/PhysRevLett.118.105501

    Article  Google Scholar 

  26. Xia S, Qi Y, Perry T, Kim KS (2009) Strength characterization of Al/Si interfaces: a hybrid method of nanoindentation and finite element analysis. Acta Mater 57:695–707. https://doi.org/10.1016/j.actamat.2008.10.011

    Article  CAS  Google Scholar 

  27. Wang QG, Jones PE (2007) Prediction of fatigue performance in aluminum shape castings containing defects. Metall Mater Trans B 38:615–621. https://doi.org/10.1007/s11663-007-9051-4

    Article  CAS  Google Scholar 

  28. Liu J, Wang Q, Qi Y (2018) Atomistic simulation of the formation and fracture of oxide bifilms in cast aluminum. Acta Mater 164:673–682. https://doi.org/10.1016/J.ACTAMAT.2018.11.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jialin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Wang, Q., Qi, Y. (2019). Connecting Oxide Bifilms’ Properties from Atomistic Simulations with Virtual Casting of Aluminum. In: Tiryakioğlu, M., Griffiths, W., Jolly, M. (eds) Shape Casting. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-06034-3_4

Download citation

Publish with us

Policies and ethics