Skip to main content

Knowledge Graph Completion to Predict Polypharmacy Side Effects

  • Conference paper
  • First Online:
Data Integration in the Life Sciences (DILS 2018)

Abstract

The polypharmacy side effect prediction problem considers cases in which two drugs taken individually do not result in a particular side effect; however, when the two drugs are taken in combination, the side effect manifests. In this work, we demonstrate that multi-relational knowledge graph completion achieves state-of-the-art results on the polypharmacy side effect prediction problem. Empirical results show that our approach is particularly effective when the protein targets of the drugs are well-characterized. In contrast to prior work, our approach provides more interpretable predictions and hypotheses for wet lab validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at http://snap.stanford.edu/decagon.

References

  1. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems \(26\) (2013)

    Google Scholar 

  2. Cheng, F., Zhao, Z.: Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J. Am. Med. Inform. Assoc. 21(e2), e278–e286 (2014)

    Article  Google Scholar 

  3. Fishman, D.A., Liu, Y., Ellerbroek, S.M., Stack, M.S.: Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res. 61(7), 3194–3199 (2001)

    Google Scholar 

  4. García-Durán, A., Niepert, M.: KBLRN: end-to-end learning of knowledge base representations with latent, relational, and numerical features. In: Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence (2018)

    Google Scholar 

  5. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  Google Scholar 

  6. Kuhn, M., Letunic, I., Jensen, L.J., Bork, P.: The SIDER database of drugs and side effects. Nucl. Acids Res. 44(D1), D1075–D1079 (2016)

    Article  Google Scholar 

  7. Manicone, A.M., McGuire, J.K.: Matrix metalloproteinases as modulators of inflammation. Semin. Cell Dev. Biol. 19(1), 34–41 (2008)

    Article  Google Scholar 

  8. Munshi, H.G., Wu, Y.I., Ariztia, E.V., Stack, M.S.: Calcium regulation of matrix metalloproteinase-mediated migration in oral squamous cell carcinoma cells. J. Biol. Chem. 277(44), 41480–41488 (2002)

    Article  Google Scholar 

  9. Sridhar, D., Fakhraei, S., Getoor, L.: A probabilistic approach for collective similarity-based drug-drug interaction prediction. Bioinformatics 32(20), 3175–3182 (2016)

    Article  Google Scholar 

  10. Szklarczyk, D., Santos, A., von Mering, C., Jensen, L.J., Bork, P., Kuhn, M.: STITCH 5: augmenting protein-checical interaction networks with tissue and affinity data. Nucl. Acids Res. 44, D380–D384 (2016)

    Article  Google Scholar 

  11. Tatonetti, N.P., Ye, P.P., Daneshjou, R., Altman, R.B.: Data-driven prediction of drug effects and interactions. Sci. Transl. Med. 4(125), 125ra31 (2012)

    Article  Google Scholar 

  12. Yang, B., tau Yih, S.W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of the 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  13. Zhang, W., Chen, Y., Liu, F., Luo, F., Tian, G., Li, X.: Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinform. 18, 18 (2017)

    Article  Google Scholar 

  14. Zitnik, M., Agrawal, M., Leskovec, J.: Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34(13), 457–466 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon Malone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malone, B., García-Durán, A., Niepert, M. (2019). Knowledge Graph Completion to Predict Polypharmacy Side Effects. In: Auer, S., Vidal, ME. (eds) Data Integration in the Life Sciences. DILS 2018. Lecture Notes in Computer Science(), vol 11371. Springer, Cham. https://doi.org/10.1007/978-3-030-06016-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06016-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06015-2

  • Online ISBN: 978-3-030-06016-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics