Skip to main content

A Hybrid GRASP/VND Heuristic for the Design of Highly Reliable Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11299))

Abstract

There is a strong interplay between network reliability and connectivity theory. In fact, previous studies show that the graphs with maximum reliability, called uniformly most-reliable graphs, must have the highest connectivity. In this paper, we revisit the underlying theory in order to build uniformly most-reliable cubic graphs. The computational complexity of the problem promotes the development of heuristics. The contributions of this paper are three-fold. In a first stage, we propose an ideal Variable Neighborhood Descent (VND) which returns the graph with maximum reliability. This VND works in exponential time. In a second stage, we propose a hybrid GRASP/VND approach that trades quality for computational effort. A construction phase enriched with a Restricted Candidate List (RCL) offers diversification. Our local search phase includes a factor-2 algorithm for an Integer Linear Programming (ILP) model. As a product of our research, we recovered previous optimal graphs from the related literature in the field. Additionally, we offer new candidates of uniformly most-reliable graphs with maximum connectivity and maximum number of spanning trees.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bauer, D., Boesch, F., Suffel, C., Van Slyke, R.: On the validity of a reduction of reliable network design to a graph extremal problem. IEEE Trans. Circuits Syst. 34(12), 1579–1581 (1987)

    Article  Google Scholar 

  2. Beineke, L.W., Wilson, R.J., Oellermann, O.R.: Topics in Structural Graph Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  3. Biggs, N.: Algebraic Graph Theory. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  4. Boesch, F.T., Li, X., Suffel, C.: On the existence of uniformly optimally reliable networks. Networks 21(2), 181–194 (1991)

    Article  MathSciNet  Google Scholar 

  5. Canale, E., Cancela, H., Robledo, F., Romero, P., Sartor, P.: Full complexity analysis of the diameter-constrained reliability. Int. Trans. Oper. Res. 22(5), 811–821 (2015)

    Article  MathSciNet  Google Scholar 

  6. Colbourn, C.J.: Reliability issues in telecommunications network planning. In: Sansò, B., Soriano, P. (eds.) Telecommunications Network Planning. CRT, pp. 135–146. Springer, Boston (1999). https://doi.org/10.1007/978-1-4615-5087-7_8

    Chapter  Google Scholar 

  7. Duarte, A., Mladenović, N., Sánchez-Oro, J., Todosijević, R.: Variable neighborhood descent. In: Martí, R., Panos, P., Resende, M. (eds.) Handbook of Heuristics, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-07153-4_9-1

    Chapter  Google Scholar 

  8. Fishman, G.S.: Monte Carlo: Concepts, Algorithms and Applications. Springer, New York (1996). https://doi.org/10.1007/978-1-4757-2553-7

    Book  MATH  Google Scholar 

  9. Hajek, B., Zhu, J.: The missing piece syndrome in peer-to-peer communication. In: 2010 IEEE International Symposium on Information Theory, pp. 1748–1752, June 2010

    Google Scholar 

  10. Harary, F.: The maximum connectivity of a graph. Proc. Natl. Acad. Sci. U. S. A. 48(7), 1142–1146 (1962)

    Article  MathSciNet  Google Scholar 

  11. Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the Jones and Tutte polynomials. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 108, no. 1, pp. 35–53 (1990)

    Article  MathSciNet  Google Scholar 

  12. Jin, R., et al.: Detecting node failures in mobile wireless networks: a probabilistic approach. IEEE Trans. Mob. Comput. 15(7), 1647–1660 (2016)

    Article  Google Scholar 

  13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  14. Kelmans, A.K.: On graphs with randomly deleted edges. Acta Math. Acad. Sci. Hung. 37(1), 77–88 (1981)

    Article  MathSciNet  Google Scholar 

  15. Kirchoff, G.: Über die auflösung der gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Article  Google Scholar 

  16. Rela, G., Robledo, F., Romero, P.: Petersen graph is uniformly most-reliable. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R. (eds.) MOD 2017. LNCS, vol. 10710, pp. 426–435. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72926-8_35

    Chapter  Google Scholar 

  17. Resende, M.G.C., Ribeiro, C.C.: Optimization by GRASP - Greedy Randomized Adaptive Search Procedures. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-6530-4

    Book  MATH  Google Scholar 

  18. Romero, P.: Building uniformly most-reliable networks by iterative augmentation. In: 9th International Workshop on Resilient Networks Design and Modeling (RNDM), pp. 1–7 (2017)

    Google Scholar 

  19. Rosenthal, A.: Computing the reliability of complex networks. SIAM J. Appl. Math. 32(2), 384–393 (1977)

    Article  MathSciNet  Google Scholar 

  20. Satyanarayana, A., Schoppmann, L., Suffel, C.L.: A reliability improving graph transformation with applications to network reliability. Networks 22(2), 209–216 (1992)

    Article  MathSciNet  Google Scholar 

  21. Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the probability that a graph is connected. SIAM J. Comput. 12(4), 777–788 (1983)

    Article  MathSciNet  Google Scholar 

  22. Viera, J.: Búsqueda de grafos cúbicos de máxima confiabilidad. Master’s thesis, Facultad de Ingeniería, Universidad de la República, Uruguay (2018)

    Google Scholar 

  23. Wang, G.: A proof of Boesch’s conjecture. Networks 24(5), 277–284 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Project 395 CSIC I+D Sistemas Binarios Estocásticos Dinámicos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Stábile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bourel, M., Canale, E., Robledo, F., Romero, P., Stábile, L. (2019). A Hybrid GRASP/VND Heuristic for the Design of Highly Reliable Networks. In: Blesa Aguilera, M., Blum, C., Gambini Santos, H., Pinacho-Davidson, P., Godoy del Campo, J. (eds) Hybrid Metaheuristics. HM 2019. Lecture Notes in Computer Science(), vol 11299. Springer, Cham. https://doi.org/10.1007/978-3-030-05983-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05983-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05982-8

  • Online ISBN: 978-3-030-05983-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics