Skip to main content

Challenges and Opportunities in Wearable Biomedical Interfaces

  • Chapter
  • First Online:
Analog-and-Algorithm-Assisted Ultra-low Power Biosignal Acquisition Systems

Abstract

This chapter provides an overview of the challenges and opportunities in wearable biomedical interfaces. Specifically, the challenges involved in acquiring biosignals with high fidelity in limited power budgets are highlighted. This chapter also introduces electrocardiogram (ECG) and photoplethysmogram (PPG) signal acquisition and processing as modalities for estimating the cardiovascular state. Assisted signal processing architectures, specifically analog and algorithmic assisted approaches, are introduced as opportunities to mitigate the challenges in low-power biosignal acquisition platforms. Finally, the organization of the rest of the chapters of the book is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Noise efficiency factor (NEF) is a quantitative metric that captures the current consumption–noise trade-off of IAs.

  2. 2.

    Applications that involve stimulation, as is the case with pacemakers, require high BW to capture pacing pulses.

References

  1. “European cardiovascular disease statistics,” 2012 [Online]. Available: http://www.escardio.org/about/documents/eu-cardiovascular-disease-statistics-2012.pdf

  2. A.S. Go, D. Mozaffarian, V.L. Roger, E.J. Benjamin, J.D. Berry, W.B. Borden, D.M. Bravata, S. Dai, E.S. Ford, C.S. Fox et al., Heart disease and stroke statistics-2013 update. Circulation 127(1), e6–e245 (2013)

    Google Scholar 

  3. G. Williams, K. Doughty, D. Bradley, A systems approach to achieving CarerNet-an integrated and intelligent telecare system. IEEE Trans. Inf. Technol. Biomed. 2(1), 1–9 (1998)

    Article  Google Scholar 

  4. L.I. Galindez Olascoaga, K. Badami, V.R. Pamula, S. Lauwereins, W. Meert, M. Verhelst, Exploiting system configurability towards dynamic accuracy-power trade-offs in sensor front-ends, in Proceedings of the 50th Asilomar Conference on Signals, Systems, and Computers (IEEE, Piscataway, 2016), pp. 1027–1031

    Google Scholar 

  5. H. Kim, S. Kim, N.V. Helleputte, A. Artes, M. Konijnenburg, J. Huisken, C.V. Hoof, R.F. Yazicioglu, A configurable and low-power mixed signal SoC for portable ECG monitoring applications. IEEE Trans. Biomed. Circuits Syst. 8(2), 257–267 (2014)

    Article  Google Scholar 

  6. P. Harpe, H. Gao, R. van Dommele, E. Cantatore, A.H.M. van Roermund, A 0.20 3 nW signal acquisition IC for miniature sensor nodes in 65 nm CMOS. IEEE J. Solid State Circuits 51(1), 240–248 (2016)

    Google Scholar 

  7. M. Steyaert, W. Sansen, A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J. Solid State Circuits 22(6), 1163–1168 (1987)

    Article  Google Scholar 

  8. J. Kwong, A.P. Chandrakasan, An energy-efficient biomedical signal processing platform. IEEE J. Solid State Circuits 46(7), 1742–1753 (2011)

    Article  Google Scholar 

  9. A. Ba, M. Vidojkovic, K. Kanda, N.F. Kiyani, M. Lont, X. Huang, X. Wang, C. Zhou, Y.-H. Liu, M. Ding, B. Busze, S. Masui, M. Hamaminato, H. Sato, K. Philips, H. de Groot, A 0.33 nJ/bit IEEE802.15.6/proprietary MICS/ISM wireless transceiver with scalable data rate for medical implantable applications. IEEE J. Biomed. Health Inform. 19(3), 920–929 (2015)

    Article  Google Scholar 

  10. N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, A.P. Chandrakasan, A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid State Circuits 45(4), 804–816 (2010)

    Article  Google Scholar 

  11. H. Kim, R.F. Yazicioglu, T. Torfs, P. Merken, H.-J. Yoo, C.V. Hoof, A low power ECG signal processor for ambulatory arrhythmia monitoring system, in 2010 Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers (IEEE), Piscataway, 2010)

    Google Scholar 

  12. A.Y. Dogan, J. Constantin, M. Ruggiero, A. Burg, D. Atienza, Multi-core architecture design for ultra-low-power wearable health monitoring systems, in 2012 Design, Automation and Test in Europe Conference and Exhibition (DATE) (Mar 2012)

    Google Scholar 

  13. J. Webster, Medical Instrumentation: Application and Design (Wiley, Hoboken, 2009)

    Google Scholar 

  14. R.F. Yazicioglu, S. Kim, T. Torfs, H. Kim, C. Van Hoof, A 30 μW analog signal processor ASIC for portable biopotential signal monitoring. IEEE J. Solid State Circuits 46(1), 209–223 (2011)

    Article  Google Scholar 

  15. N.V. Thakor, J.G. Webster, W.J. Tompkins, Estimation of QRS complex power spectra for design of a QRS filter. IEEE Trans. Biomed. Eng. BME-31(11), 702–706 (1984)

    Article  Google Scholar 

  16. E.S. Winokur, Single-site, noninvasive, blood pressure measurements at the ear using ballistocardiogram (BCG), and photoplethysmogram (PPG), and a low-power, reflectance-mode PPG SoC, Ph.D. dissertation, Massachusetts Institute of Technology, 2014

    Google Scholar 

  17. J. Allen, Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3), R1 (2007)

    Article  Google Scholar 

  18. C. Poon, Y. Zhang, Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time, in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (2005)

    Google Scholar 

  19. J.G. Webster, Design of Pulse Oximeters (CRC Press, Boca Raton, 1997)

    Google Scholar 

  20. K.N. Glaros, Low-power pulse oximetry and transimpedance amplifiers, Ph.D. dissertation, Imperial College London, 2011

    Google Scholar 

  21. R. Sarpeshkar, Universal principles for ultra low power and energy efficient design. IEEE Trans. Circuits Syst. Express Briefs 59(4), 193–198 (2012)

    Article  Google Scholar 

  22. N.V. Helleputte, S. Kim, H. Kim, J.P. Kim, C.V. Hoof, R.F. Yazicioglu, A 160 μA biopotential acquisition IC with fully integrated IA and motion artifact suppression. IEEE Trans. Biomed. Circuits Syst. 6(6), 552–561 (2012)

    Article  Google Scholar 

  23. J.L. Bohorquez, M. Yip, A.P. Chandrakasan, J.L. Dawson, A biomedical sensor interface with a sinc filter and interference cancellation. IEEE J. Solid State Circuits 46(4), 746–756 (2011)

    Article  Google Scholar 

  24. S. Kawahito, M. Yoshida, M. Sasaki, K. Umehara, D. Miyazaki, Y. Tadokoro, K. Murata, S. Doushou, A. Matsuzawa, A CMOS image sensor with analog two-dimensional DCT-based compression circuits for one-chip cameras. IEEE J. Solid State Circuits 32(12), 2030–2041 (1997)

    Article  Google Scholar 

  25. E.H. Lee, S.S. Wong, Analysis and design of a passive switched-capacitor matrix multiplier for approximate computing. IEEE J. Solid State Circuits 52(1), 261–271 (2017)

    Article  Google Scholar 

  26. L. Yan, P. Harpe, V.R. Pamula, M. Osawa, Y. Harada, K. Tamiya, C.V. Hoof, R.F. Yazicioglu, A 680 nA ECG acquisition IC for leadless pacemaker applications. IEEE Trans. Biomed. Circuits Syst. 8(6), 779–786 (2014)

    Article  Google Scholar 

  27. E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  28. D. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pamula, V.R., Van Hoof, C., Verhelst, M. (2019). Challenges and Opportunities in Wearable Biomedical Interfaces. In: Analog-and-Algorithm-Assisted Ultra-low Power Biosignal Acquisition Systems. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-05870-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05870-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05869-2

  • Online ISBN: 978-3-030-05870-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics