Skip to main content

Dmipy, A Diffusion Microstructure Imaging Toolbox in Python to Improve Research Reproducibility

  • Conference paper
  • First Online:
Computational Diffusion MRI (MICCAI 2019)

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Non-invasive estimation of brain white matter microstructure features using diffusion MRI—otherwise known as Microstructure Imaging—has become an increasingly diverse and complicated field over the last decade. Multi-compartment-based models have been a popular approach to estimate these features. In this work, we present Diffusion Microstructure Imaging in Python (Dmipy), a diffusion MRI toolbox which allows accessing any multi-compartment-based model and robustly estimates these important features from single-shell, multi-shell, and multi-diffusion time, and multi-TE data. Dmipy follows a building block-based philosophy to microstructure imaging, meaning a multi-compartment model can be constructed and fitted to dMRI data using any combination of underlying tissue models, axon dispersion-or diameter distributions, and optimization algorithms using less than 10 lines of code, thus helps improve research reproducibility. In describing the toolbox, we show how Dmipy enables to easily design microstructure models and offers to the users the freedom to choose among different optimization strategies. We finally present three advanced examples of highly complex modeling approaches which are made easy using Dmipy.

Abib Alimi and Rutger Fick share first authorship for this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://my.vanderbilt.edu/ismrmtraced2017/.

  2. 2.

    Although finding a unique minimum will be difficult given its many parameters.

References

  1. Panagiotaki, E., et al.: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. NeuroImage 59(3), 2241–2254 (2012)

    Article  Google Scholar 

  2. Ianuş, A., Alexander, D.C., Drobnjak, I.: Microstructure imaging sequence simulation toolbox. In: International Workshop on Simulation and Synthesis in Medical Imaging, pp. 34–44. Springer, Cham. (2016)

    Chapter  Google Scholar 

  3. Drobnjak, I., et al.: The matrix formalism for generalised gradients with time-varying orientation in diffusion NMR. J. Magn. Reson. 210(1), 151–157 (2011)

    Article  Google Scholar 

  4. Hernandez-Fernandez, M., Reguly, I., Jbabdi, S., Giles, M., Smith, S., Sotiropoulos, S.N.: Using GPUs to accelerate computational diffusion MRI: from microstructure estimation to tractography and connectomes (2018)

    Google Scholar 

  5. Harms, R.L., et al.: Robust and fast nonlinear optimization of diffusion MRI microstructure models. Neuroimage 155, 82–96 (2017)

    Article  Google Scholar 

  6. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diusion mri: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35, 14591472 (2007)

    Article  Google Scholar 

  7. Fick, R., Wassermann, D., Deriche, R.: Mipy: an open-source framework to improve reproducibility in brain microstructure imaging. In: OHBM 2018 - Human Brain Mapping, pp. 1–4, June 2018, Singapore, Singapore (2018). (hal-01722146)

    Google Scholar 

  8. Fick, R., Deriche, R., Wassermann, D.: Dmipy: An Open-source Framework for Reproducible dMRI-Based Microstructure Research (Version 0.1), Zenodo. (2018). https://doi.org/10.5281/zenodo.1188268

  9. Stejskal, E., Tanner, J.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288292 (1965)

    Article  Google Scholar 

  10. Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54, 13771386 (2005)

    Article  Google Scholar 

  11. Callaghan, P.T.: Pulsed-gradient spin-echo NMR for planar, cylindrical, and spherical pores under conditions of wall relaxation. J. Magn. Reson. Ser. A 113(1), 53–59 (1995)

    Article  Google Scholar 

  12. Assaf, Y., Freidlin, R.Z., Rohde, G.K., Basser, P.J.: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52, 965978 (2004)

    Article  Google Scholar 

  13. Kroenke, C.D., Ackerman, J.J.H., Yablonskiy, D.A.: On the nature of the NAA diffusion attenuated MR signal in the central nervous system. Magn. Reson. Med. 52, 1052–1059 (2004)

    Article  Google Scholar 

  14. Behrens, T., Woolrich, M., Jenkinson, M., Johansen-Berg, H., Nunes, R., Clare, S., Matthews, P., Brady, J., Smith, S.: Characterization and propagation of uncertainty in diffusion-weighted mr imaging. MRM 50, 10771088 (2003)

    Article  Google Scholar 

  15. Söderman, O., Jönsson, B.: Restricted diffusion in cylindrical geometry. J. Magn. Reson. Ser. A 117, 9497 (1995)

    Article  Google Scholar 

  16. Vangelderen, P., DesPres, D., Vanzijl, P., Moonen, : C.: Evaluation of restricted diffusion in cylinders. Phosphocreatine in rabbit leg muscle. J. Magn. Reson., Ser. B 103, 255–260 (1994)

    Article  Google Scholar 

  17. Neuman, C.: Spin echo of spins diffusing in a bounded medium. J. Chem. Phys. 60, 45084511 (1974)

    Article  Google Scholar 

  18. Aboitiz, F., Scheibel, A.B., Fisher, R.S., Zaidel, E.: Fiber composition of the human corpus callosum. Brain Res. 598, 143153 (1992)

    Google Scholar 

  19. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J.: Axcaliber: a method for measuring axon diameter distribution from diffusion mri. MRM 59, 13471354 (2008)

    Article  Google Scholar 

  20. Novikov, D.S., Jensen, J.H., Helpern, J.A., Fieremans, E.: Revealing mesoscopic structural universality with diffusion. Proc. Nat. Acad. Sci. 201316944 (2014)

    Google Scholar 

  21. Burcaw, L.M., Fieremans, E., Novikov, D.S.: Mesoscopic structure of neuronal tracts from time-dependent diffusion. NeuroImage 114, 1837 (2015)

    Article  Google Scholar 

  22. Szafer, A., Zhong, J., Gore, J.C.: Theoretical model for water diffusion in tissues. Magn. Reson. Med. 33, 697712 (1995)

    Article  Google Scholar 

  23. Leergaard, T.B., et al.: Quantitative histological validation of diffusion MRI fiber orientation distributions in the rat brain. PloS one 5(1), e8595 (2010)

    Article  Google Scholar 

  24. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted mri data using spherical deconvolution. NeuroImage 23, 11761185 (2004)

    Article  Google Scholar 

  25. Descoteaux, M., Deriche, R., Anw, A., Bio, T., Odyssée, P.: Deterministic and probabilistic qball tractography: from diffusion to sharp fiber distributions. Technical report 6273, INRIA Sophia Antipolis (2007b)

    Google Scholar 

  26. Tariq, M., Schneider, T., Alexander, D.C., Wheeler-Kingshott, C.A.G., Zhang, H.: Binghamnoddi: Mapping anisotropic orientation dispersion of neurites using diffusion mri. NeuroImage 133, 207223 (2016)

    Article  Google Scholar 

  27. Bingham, C.: An antipodally symmetric distribution on the sphere. Ann. Stat. 1201–1225 (1974)

    Article  MathSciNet  Google Scholar 

  28. Kaden, E., Knsche, T.R., Anwander, A.: Parametric spherical deconvolution: inferring anatomical connectivity using diffusion MR imaging. NeuroImage 37(2), 474–488 (2007)

    Article  Google Scholar 

  29. Farooq, H., Xu, J., Nam, J.W., Keefe, D.F., Yacoub, E., Georgiou, T., Lenglet, C.: Microstructure imaging of crossing (MIX) white matter fibers from diffusion MRI. Sci. Rep. 6, 38927 (2016)

    Google Scholar 

  30. Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage 103, 411–426 (2014)

    Article  Google Scholar 

  31. Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., Nimmo-Smith, I., Contributors, D.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinformatics 8 (2014)

    Google Scholar 

  32. Kaden, E., Kelm, N.D., Carson, R.P., Does, M.D., Alexander, D.C.: Multi-compartment microscopic diffusion imaging. NeuroImage (2016)

    Google Scholar 

  33. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: Noddi: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61, 10001016 (2012)

    Article  Google Scholar 

  34. Pizzolato, M., Wassermann, D., Deriche, R., Fick, R.: Orientation-dispersed apparent axon diameter via multi-stage spherical mean optimization. In: CDMRI (2018)

    Google Scholar 

  35. Dhollander, T., et al.: Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image. In: ISMRM Workshop on Breaking the Barriers of Diffusion MRI, vol. 5 (2016)

    Google Scholar 

  36. De Santis, S., Jones, D.K., Roebroeck, A.: Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter. NeuroImage 130, 91103 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by ANR “MOSIFAH” under ANR-13-MONU-0009-01, the ERC under the European Union’s Horizon 2020 research and innovation program (ERC Advanced Grant agreement No 694665:CoBCoM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abib Alimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alimi, A., Fick, R., Wassermann, D., Deriche, R. (2019). Dmipy, A Diffusion Microstructure Imaging Toolbox in Python to Improve Research Reproducibility. In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C. (eds) Computational Diffusion MRI. MICCAI 2019. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-05831-9_5

Download citation

Publish with us

Policies and ethics