Skip to main content

Starch-Based Nanocomposites: Types and Industrial Applications

  • Chapter
  • First Online:
Book cover Bio-based Polymers and Nanocomposites

Abstract

The extraordinary physicochemical and functional features offered by the starch material segregated from various sources of plants, such as rice, corn and wheat, are put into use for a large extent of applications. The physicochemical features of starch namely lipids content, a ratio of amylose to amylopectin, the size distribution of granule play a significant role to grasp the concept related to the mechanism on the functionality of starch in various systems. The starch-modified chemistry along with a large number of reactive sites carries the biologically active compounds as biocompatible carriers and are metabolized in the human body quickly and comfortably. The current chapter focusses on the different composites made up of starch along with polymers like polylactic acid, polycaprolactone, polyhydroxy alkaloid where the synthesis, chemistry and application part are greatly discussed. Further, the physicochemical stability of the nanocomposites relating the specific structure is compared in addition to their deployment in various industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry. LWT Food Sci Technol 43:837–842

    Article  Google Scholar 

  • Arfin T (2015) Chitosan and its derivatives: overlook of commercial application in diverse field. In: Ahmed S, Ikram S (eds) Chitosan: derivatives, composites and applications. Scrivener Publishing LLC, USA

    Google Scholar 

  • Arfin T, Athar S (2018) Graphene for advanced organic photovoltaics. In: Kanchi S, Ahmed S, Sabela MI, Hussian CM (eds) Nanomaterials: biomedical and environmental applications. Scrivener Publishing LLC, USA

    Google Scholar 

  • Arfin T, Mohammad F (2016) Chemistry and structural aspects of chitosan towards biomedical applications. In: Ikram S, Ahmed S (eds) Natural polymers: derivatives, blends and composites. Nova Science Publishers, New York

    Google Scholar 

  • Arfin T, Tarannum A (2017) Polymer materials: from the past to the future. In: Ahmed S, Annu S, Ikram S (eds) Green polymeric materials: advanced and sustainable development. Nova Science Publishers, New York

    Google Scholar 

  • Arfin T, Mohammad F, Yusof NA (2014) Biomass resources in environmental and socio-economic analysis of fuel-wood consumption. In: Hakeem KR, Jawaid M, Rashid U (eds) Biomass and bioenergy: processing and properties. Springer International Publishing, Switzerland

    Google Scholar 

  • Armentano I, Bitinis N, Fortunati E et al (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747

    Article  Google Scholar 

  • Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474

    Article  Google Scholar 

  • Avérous L, Pollet E (2012) Environmental silicate nano-biocomposites. Springer International Publishing, Switzerland

    Google Scholar 

  • Ayana B, Suin S, Khatua BB (2014) Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly(lactic acid) (PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr Polym 110:430–439

    Article  Google Scholar 

  • Azimi B, Nourpanah P, Rabiee M, Arbab S (2014) Poly(ε-caprolactone) fiber: an overview. J Eng Fibers Fabr 9:74–90

    Google Scholar 

  • Babaei A, Babazadeh M (2011) Multi-walled carbon nanotubes/chitosan polymer composite modified glassy carbon electrode for sensitive simultaneous determination of levodopa and morphine. Anal Methods 3:2400–2405

    Article  Google Scholar 

  • Bansal M, Chauhan GS, Kaushik A, Sharma A (2016) Extraction and functionalization of bagasse cellulose nanofibres to Schiff-base based antimicrobial membranes. Int J Biol Macromol 91:887–894

    Article  Google Scholar 

  • Barrera E, Gil J, Restrepo A, Mosquera K, Durango D (2015) A coating of chitosan and propolis extract for the postharvest treatment of papaya (Carica papaya L. cv. Hawaiiana). Rev Fac Nac Agron Medellín 68:7667–7678

    Article  Google Scholar 

  • Barzegar H, Azizi MH, Barzegar M, Hamidi-Esfahani Z (2014) Effect of potassium sorbate on antimicrobial and physical properties of starch–clay nanocomposite films. Carbohydr Polym 110:26–31

    Article  Google Scholar 

  • Bie P, Liu P, Yu L, Li X, Chen L, Xie F (2013) The properties of antimicrobial films derived from poly(lactic acid)/starch/chitosan blended matrix. Carbohydr Polym 98:959–966

    Article  Google Scholar 

  • Bordes P, Pollet E, Bourbigot S, Avérous L (2008) Structure and properties of PHA/clay nano-biocomposites prepared by melt intercalation. Macromol Chem Phys 209:1473–1484

    Article  Google Scholar 

  • Botana A, Mollo M, Eisenberg P, Torres Sanchez RM (2010) Effect of modified montmorillonite on biodegradable PHB nanocomposites. Appl Clay Sci 47:263–270

    Article  Google Scholar 

  • Bouyer E, Mekhloufi G, Rosilio V, Grossiord JL, Agnely F (2012) Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? Int J Pharm 436:359–378

    Article  Google Scholar 

  • Bruzaud S, Bourmaud A (2007) Thermal degradation and (nano) mechanical behavior of layered silicate reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. Polym Test 26:652–659

    Article  Google Scholar 

  • Burdock GA (1998) Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol 36:347–363

    Article  Google Scholar 

  • Chang PR, Ai F, Chen Y, Dufresne A, Huang J (2009) Effects of starch nanaocrystals-graftpolycaprolactone on mechanical properties of waterbone polyurethane-based nanocomposites. J Appl Polym Sci 111:619–627

    Article  Google Scholar 

  • Chang PR, Jian R, Yu J, Ma X (2010a) Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr Polym 80:420–425

    Article  Google Scholar 

  • Chang PR, Jian R, Yu J, Ma X (2010b) Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chem 120:736–740

    Article  Google Scholar 

  • Chen GG, Qi XM, Guan Y, Peng F, Yao CL, Sun RC (2016) High strength hemicellulose-based nanocomposite film for food packaging applications. ACS Sustain Chem Eng 4:1985–1993

    Article  Google Scholar 

  • Chiou BS, Wood D, Yee E, Imam SH, Glenn GM, Orts WJ (2007) Extruded starch-nanoclay nancomposites: effects of glycerol and nanoclay concentration. Polym Eng Sci 47:1898–1904

    Article  Google Scholar 

  • Choi JS, Park WH (2004) Effect of biodegradable plasticizers on thermal and mechanical properties of poly(3-hydroxybutyrate). Polym Test 23:455–460

    Article  Google Scholar 

  • Choi Y, Simonsen J (2006) Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J Nanosci Nanotechnol 6:633–639

    Article  Google Scholar 

  • Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ (2008) The influence of electrospun aligned poly (epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29:2899–2906

    Article  Google Scholar 

  • Chung YL, Ansari S, Estevez L et al (2010) Preparation and properties of biodegradable starch–clay nanocomposites. Carbohydr Polym 79:391–396

    Article  Google Scholar 

  • Cui Y, Kumar S, Kona BR, van Houcke D (2015) Gas barrier properties of polymer/clay nanocomposites. RSC Adv 5:63669–63690

    Article  Google Scholar 

  • D’Amico DA, Manfredi LB, Cyras VP (2012) Relationship between thermal properties, morphology, and crystallinity of nanocomposites based on polyhydroxybutyrate. J Appl Polym Sci 123:200–208

    Article  Google Scholar 

  • Da Silva MA, Iamanaka B, Taniwaki MH, Kieckbusch TG (2013) Evaluation of the antimicrobial potential of alginate and alginate/chitosan films containing potassium sorbate and natamycin. Packag Technol Sci 26:479–492

    Article  Google Scholar 

  • DeKesel C, Wauven CV, David C (1997) Biodegradation of polycaprolactone and its blends with poly(vinylalcohol) by microorganisms from a compost of house-hold refuse. Polym Degrad Stab 55:107–113

    Article  Google Scholar 

  • Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:290602 (19 pp)

    Article  Google Scholar 

  • El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly(3-hydroxyalkanoate) PHAs and their blends. Polym Test 21:665–674

    Article  Google Scholar 

  • Fabunmi OO, Lope G. Tabil LG, Panigrahi S, Chang PR (2007) Developing biodegradable plastics from starch. ASABE section meeting paper no. RRV-07130. St. Joseph, Mich

    Google Scholar 

  • Famá LM, Gañan P, Bernal CR, Goyanes S (2012) Biodegradable starch nanocomposites with low water vapour permeability and high storage modulus. Carbohydr Polym 87:1989–1993

    Article  Google Scholar 

  • Ferreira BMP, Zavaglia CAC, Duek EAR (2002) Films of PLLA/PHBV: thermal, morphological, and mechanical characterization. J Appl Polym Sci 86:2898–2906

    Article  Google Scholar 

  • Gain O, Espuche E, Pollet E, Alexandre M, Dubois P (2005) Gas barrier properties of poly(ε-caprolactone)/clay nanocomposites: influence of the morphology and polymer/clay interactions. J Polym Sci Polym Phys 43:205–214

    Article  Google Scholar 

  • Gao W, Dong H, Hou H, Zhang H (2012) Effects of clays with various hydrophilicities on properties of starch–clay nanocomposites by film blowing. Carbohydr Polym 88:321–328

    Article  Google Scholar 

  • Garcia MDS, Lagaron JM (2010) Novel clay-based nanobiocomposites of biopolyesters with synergistic barrier to UV light, gas, and vapour. J Appl Polym Sci 118:188–199

    Article  Google Scholar 

  • Garza MZT, Garcia S, Gonzalez MDSF, Nino KAL (2015) Edible active coatings based on pectin, pullulan, and chitosan increase quality and shelf life of strawberries (Fragaria ananassa). J Food Sci 80:M1823–M1830

    Google Scholar 

  • George J, Siddaramaiah (2012) High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydr Polym 87:2031–2037. https://www.sciencedirect.com/science/article/pii/S0144861711009258.

    Article  Google Scholar 

  • Ghanbarzadeh B, Almasi H, Entezami A (2011) Improving the barrier and mechanical properties of corn starch-based edible films: effect of citric acid and carboxymethyl cellulose. Ind Crop Prod 33:229–235

    Article  Google Scholar 

  • Giannakas A, Vlacha M, Salmas C et al (2016) Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites. Carbohydr Polym 140:408–415

    Article  Google Scholar 

  • Gol NB, Patel PR, Rao TVR (2013) Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol Technol 85:185–195

    Article  Google Scholar 

  • Guillen MCG, Gimenez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827

    Article  Google Scholar 

  • Gupta D, Venugopal J, Prabhakaran MP et al (2009) Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater 5:2560–2569

    Article  Google Scholar 

  • Gutiérrez TJ, Pérez E, Guzmán R, Tapia MS, Famá L (2014) Physicochemical and functional properties of native and modified by crosslinking, dark cush-cush yam (Dioscorea trifida) and cassava (Manihot esculenta) starch. J Polym Biopolym Phys Chem 2:1–5

    Google Scholar 

  • Hashemi JM (2016) Biological effect of bee propolis: a review. Eur J Appl Sci 8:311–318

    Google Scholar 

  • Hassani FS, Nafchi AM (2014) Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. Int J Biol Macromol 67:446–458

    Article  Google Scholar 

  • Higueras L, Carballo GL, Munoz PH, Catala R, Gavara R (2014) Antimicrobial packaging of chicken fillets based on the release of carvacrol from chitosan/cyclodextrin films. Int J Food Microbiol 188:53–59

    Article  Google Scholar 

  • Homminga D, Goderis B, Hoffman S, Reynaers H, Groeninckx G (2005) Influence of shear flow on the preparation of polymer layered silicate nanocomposites. Polymers 46:9941–9954

    Article  Google Scholar 

  • Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2016) Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chem 194:1266–1274

    Article  Google Scholar 

  • Hu SG, Jou CH, Yang MC (2004) Biocompatibility and antibacterial activity of chitosan and collagen immobilized poly(3-hydroxybutyric acid–co–3-hydroxyvaleric acid). Carbohydr Polym 58:173–179

    Article  Google Scholar 

  • Huang M, Yu J, Ma X (2006) High mechanical performance MMT-urea and formamide-plasticized thermoplastic cornstarch biodegradable nanocomposites. Carbohydr Polym 63:393–399

    Article  Google Scholar 

  • Huang S, Zhang CP, Wang K, GLi GQ, Hu FU (2014). Recent ddvances in the chemical composition of propolis. Molecules 19:19610–19632

    Article  Google Scholar 

  • Ikeo Y, Aoki K, Kishi H et al (2006) Nano clay reinforced biodegradable plastics of PCL starch blends. Polym Adv Technol 17:940–944

    Article  Google Scholar 

  • Iman M, Maji TK (2012) Effect of crosslinker and nanoclay on starch and jute fabric based green nanocomposites. Carbohydr Polym 89:290–297

    Article  Google Scholar 

  • Jafari J, Emami SH, Samadikuchaksaraei A, Bahar MA, Gorjipour F (2011) Electrospun chitosangelatin nanofiberous scaffold: fabrication and in vitro evaluation. Biomed Mater Eng 21:99–112

    Google Scholar 

  • Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Polylactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571

    Article  Google Scholar 

  • Jantanasakulwong K, Leksawasdi N, Seesuriyachan P et al (2016) Reactive blending of thermoplastic starch, epoxidized natural rubber and chitosan. Eur Polym J 84:292–299

    Article  Google Scholar 

  • Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150

    Article  Google Scholar 

  • Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432

    Article  Google Scholar 

  • Khan RA, Salmieri S, Dussault D et al (2010) Production and properties of nanocellulose-reinforced methylcellulose based biodegradable films. J Agri Food Chem 58:7878–7885

    Article  Google Scholar 

  • Khan A, Khan RA, Salmieri S et al (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608

    Article  Google Scholar 

  • Khwaldia K, Basta AH, Aloui H, El-Saied H (2014) Chitosancaseinate bilayer coatings for paper packaging materials. Carbohydr Polym 99:508–516

    Article  Google Scholar 

  • Kosaraju SL, Weerakkody R, Augustin MA (2010) Chitosanglucose conjugates: influence of extent of Maillard reaction on antioxidant properties. J Agric Food Chem 58:12449–12455

    Article  Google Scholar 

  • Kowalczyk D, Wiater MK, Nowak J, Baraniak B (2015) Characterization of films based on chitosan lactate and its blends with oxidized starch and gelatin. Int J Biol Macromol 77:350–359

    Article  Google Scholar 

  • Lee EJ, Khan SA, Park JK, Lim KH (2012) Studies on the characteristics of drug-loaded gelatin nanoparticles prepared by nanoprecipitation. Bioprocess Biosyst Eng 35:297–307

    Article  Google Scholar 

  • Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromol 6:1–8

    Article  Google Scholar 

  • Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27:2705–2715

    Article  Google Scholar 

  • Li Q, Zhou J, Zhang L (2009) Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polym Sci 47:1069–1077

    Article  Google Scholar 

  • Li C, Fu X, Luo F, Huang Q (2013a) Effects of maltose on stability and rheological properties of orange oil-in-water emulsion formed by OSA modified starch. Food Hydrocoll 32:79–86

    Article  Google Scholar 

  • Li F, Biagioni P, Finazzi M, Tavazzi S, Piergiovanni L (2013b) Tunable green oxygen barrier through layer-by-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydr Polym 92:2128–2134

    Article  Google Scholar 

  • Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  Google Scholar 

  • Liu K, Lin X, Chen L, Huang L, Cao S, Wang H (2013) Preparation of microfibrillated cellulose/chitosan-benzalkonium chloride biocomposite for enhancing antibacterium and strength of sodium alginate films. J Agric Food Chem 61:6562–6567

    Article  Google Scholar 

  • Lo HY, Kuo HT, Huang YY (2010) Application of polycaprolactone as an anti-adhesion biomaterial film. Artif Organs 34:648–653

    Google Scholar 

  • Lopez O, Garcia MA, Villar MA, Gentili A, Rodriguez MS, Albertengo L (2014) Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT Food Sci Technol 57:106–115

    Article  Google Scholar 

  • Lörcks J (1998) Properties and applications of compostable starch-based plastic material. Polym Degrad Stability 59:245–249

    Article  Google Scholar 

  • Ludueña LNN, Kenny JMM, Vázquez A, Alvarez VA (2011) Effect of clay organic modifier on the final performance of PCL/clay nanocomposites. Mater Sci Eng A 529:215–223

    Article  Google Scholar 

  • Matsuda DKM, Verceheze AES, Carvalho GM, Yamashita F, Mali S (2013) Baked foams of cassava starch and organically modified nanoclays. Ind Crops Prod 44:705–711

    Article  Google Scholar 

  • McDonnell MT, Greeley DA, Kit KM, Keffer DJ (2016) Molecular dynamics simulations of hydration effects on solvation, diffusivity, and permeability in chitosan/chitin films. J Phys Chem B 120:8997–9010

    Article  Google Scholar 

  • Mischnick P, Momcilovic D (2010) Chemical structure analysis of starch and cellulose derivatives. Adv Carbohydr Chem Biochem 64:117–210

    Article  Google Scholar 

  • Mizuno M (1989) Food packaging materials containing propolis as a preservative. Japanese patent no. JP Ol, 243(974), 89

    Google Scholar 

  • Mograkar PR, Arfin T (2017) Chemical and structural importance of starch based derivatives and its applications. In: Ikram S, Ahmed S (eds) Natural polymers: derivatives, blends and composite. Nova Science Publishers, New York

    Google Scholar 

  • Mohammad F, Arfin T, Yusof NA (2015) Chemical processes and reaction by-products involved in the biorefinery concept of biofuel production. In: Hakeem KR, Jawaid M, Alothman OY (eds) Agricultural biomass based potential materials. Springer International Publishing, Switzerland

    Google Scholar 

  • Molyneux RJ (1993) Isolation, characterization and analysis of polyhydroxy alkaloids. Phytochem Anal 4:193–204

    Article  Google Scholar 

  • Mondragón M, Mancilla JE, Rodríguez-González FJ (2008) Nanocomposites from plasticized high-amylopectin, normal and high-amylose maize starches. Polym Eng Sci 48:1261–1267

    Article  Google Scholar 

  • Muller J, González-Martínez C, Chiralt A (2017) Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials 10:952 (22 pp)

    Article  Google Scholar 

  • Nasseri R, Mohammadi N (2014) Starch-based nanocomposites: a comparative performance study of cellulose whiskers and starch nanoparticles. Carbohydr Polym 106:432–439

    Article  Google Scholar 

  • Nitayaphat W, Jintakosol T (2014) Removal of silver(I) from aqueous solutions by chitosan/carbon nanotube nanocomposite beads. Adv Mater Res 893:166–169

    Article  Google Scholar 

  • Noshirvani N, Ghanbarzadeh B, Mokarram RR, Hashemi M (2017) Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Pack Shelf Life 11:106–114

    Article  Google Scholar 

  • Olsson E, Hedenqvist M, Johansson C, Järnström L (2013) Influence of citric acid and curing on moisture sorption, diffusion and permeability of starch films. Carbohydr Polym 94:765–772

    Article  Google Scholar 

  • Pal AK, Katiyar V (2016) Nanoamphiphilic chitosan dispersed poly(lactic acid) bionanocomposite films with improved thermal, mechanical, and gas barrier properties. Biomacromol 17:2603–2618

    Article  Google Scholar 

  • Pandey JK, Sing RP (2005) Green nanocomposites from renewable resources: effect of plasticizer on the structure and material properties of clay-filled starch. Starch 57:8–15

    Article  Google Scholar 

  • Pantoustier N, Lepoittevin B, Alexandre M et al (2002) Biodegradable polyester layered silicate nanocomposites based on poly(ε-caprolactone). Polym Eng Sci 42:1928–1937

    Article  Google Scholar 

  • Park H, Li X, Jin C, Park C, Cho W, Ha C (2002) Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol Mater Eng 287:553–558

    Article  Google Scholar 

  • Park H, Lee W, Park C, Cho W, Ha C (2003) Enviromentally friendly polymer hybrids. Part 1 mechanical, thermal and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38:909–915

    Article  Google Scholar 

  • Pérez CJ, Alvarez VA, Mondragón I, Vázquez A (2007) Mechanical properties of layered silicate/starch polycaprolactone blend nanocomposites. Polym Int 56:686–693

    Article  Google Scholar 

  • Pérez CJ, Alvarez VA, Vázquez A (2008) Creep behaviour of layered silicate/starch–polycaprolactone blends nanocomposites. Mater Sci Eng A 480:259–265

    Article  Google Scholar 

  • Pietta PG, Gardana C, Pietta AM (2002) Analytical methods for quality control of propolis. Fitoterapia 73:S7–S20

    Article  Google Scholar 

  • Popuri SR, Frederick R, Chang CY, Fang SS, Wang CC, Lee LC (2014) Removal of copper(II) ions from aqueous solutions onto chitosan/carbon nanotubes composite sorbent. Desalin Water Treat 52:691–701

    Article  Google Scholar 

  • Poverenov E, Danino S, Horev B, Granit R, Vinokur Y, Rodov V (2014) Layer-by-layer electrostatic deposition of edible coating on fresh cut melon model: Anticipated and unexpected effects of alginate-chitosan combination. Food Bioprocess Technol 7:1424–1432

    Article  Google Scholar 

  • Pradhan GC, Dash S, Swain SK (2015) Barrier properties of nano silicon carbide designed chitosan nanocomposites. Carbohydr Polym 134:60–65

    Article  Google Scholar 

  • Qian YF, Zhang KH, Chen F, Ke QF, Mo XM (2011) Cross-linking of gelatin and chitosan complex nanofibers for tissue-engineering scaffolds. J Biomater Sci Polym Ed 22:1099–1113

    Article  Google Scholar 

  • Qu P, Gao YA, Wu GF, Zhang LP (2010) Nanocomposites of poly(lactic acid) reinforced with cellulose nanofibrils. BioResources 5:1811–1823

    Google Scholar 

  • Reis KC, Pereira J, Smith AC et al (2008) Characterization of polyhydroxybutyrate-hydroxyvalerate (PHB-HV)/maize starch blend films. J Food Eng 89:361–369

    Article  Google Scholar 

  • Rui L, Xie M, Hu B, Zhou L, Yin D, Zeng X (2017) A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid. Carbohydr Polym 173:473–481

    Article  Google Scholar 

  • Rydz J, Sikorska W, Kyulavska M, Christova D (2015) Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci 16:564–596

    Article  Google Scholar 

  • Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N (2010) Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol 46:281–283

    Article  Google Scholar 

  • Sáinz CB, Bustillos RJA, Wood DF, Williams TG, McHugh TH (2010) Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles. J Agric Food Chem 58:3753–3760

    Article  Google Scholar 

  • Sáinz CB, Bras J, Williams T et al (2011) HPMC reinforced with different cellulose nano-particles. Carbohydr Polym 86:1549–1557

    Article  Google Scholar 

  • Saiz PF, Sánchez G, Soler C, Lagaron JM, Ocio MJ (2013) Chitosan films for the microbiological preservation of refrigerated sole and hake fillets. Food Control 34:61–68

    Article  Google Scholar 

  • Salehi E, Madaeni SS, Rajabi L et al (2012) Novel chitosan/poly(vinyl) alcohol thin adsorptive membranes modified with amino functionalized multi-walled carbon nanotubes for Cu(II) removal from water: preparation, characterization, adsorption kinetics and thermodynamics. Sep Purif Technol 89:309–319

    Article  Google Scholar 

  • Sarazin P, Li G, Orts WJ, Favis BD (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49:599–609

    Article  Google Scholar 

  • Schlemmer D, Angélica RS, Sales MJA (2010) Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites. Comp Struct 92:2066–2070

    Article  Google Scholar 

  • Shan GF, Gong X, Chen WP, Chen L, Zhu MF (2011) Effect of multi-walled carbon nanotubes on crystallization behavior of poly(3-hydroxybutyrate–co–3-hydroxyvalerate). Colloid Polym Sci 289:1005–1014

    Article  Google Scholar 

  • Shang L, Fei Q, Zhang YH, Wang XZ, Fan DD, Chang HN (2011) Thermal properties and biodegradability studies of poly(3-hydroxybutyrate–co–3-hydroxyvalerate). J Polym Environ 20:23–28

    Article  Google Scholar 

  • Shawky HA, El-Aassar AHM, Abo-Zeid DE (2012) Chitosan/carbon nanotube composite beads:preparation, characterization, and cost evaluation for mercury removal from wastewater of some industrial cities in Egypt. J Appl Polym Sci 125:E93–E101

    Article  Google Scholar 

  • Sheth M, Kumar RA, Davé V, Gross RA, McCarthy SP (1997) Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). J Appl Polym Sci 66:1495–1505

    Article  Google Scholar 

  • Shi S, Wang W, Liu L, Wu S, Wei Y, Li W (2013) Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J Food Eng 118:125–131

    Article  Google Scholar 

  • Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643

    Article  Google Scholar 

  • Siripatrawan U, Vitchayakitti W (2016) Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll 61:695–702

    Article  Google Scholar 

  • Sohier J, Carubelli I, Sarathchandra P, Latif N, Chester AH, Yacoub MH (2014) The potential of anisotropic matrices as substrate for heart valve engineering. Biomaterials 35:1833–1844

    Article  Google Scholar 

  • Song Z, Li F, Guan H, Xu Y, Fu Q, Li D (2017) Combination of nisin and ε-polylysine with chitosan coating inhibits the white blush of fresh-cut carrots. Food Control 74:34–44

    Article  Google Scholar 

  • Sun X, Sui S, Ference C, Zhang Y, Sun S, Zhou N, Zhu W, Zhou K (2014) Antimicrobial and mechanical properties of betacyclodextrin inclusion with essential oils in chitosan films. J Agric Food Chem 62:8914–8918

    Article  Google Scholar 

  • Sundaram J, Pant J, Goudie MJ, Mani S, Handa H (2016) Antimicrobial and physicochemical characterization of biodegradable, nitric oxide-releasing nanocellulose-chitosan packaging membranes. J Agric Food Chem 64:5260–5266

    Article  Google Scholar 

  • Takegawa A, Murakami M, Kaneko Y, Kadokawa J (2010) Preparation of chitin/cellulose composite gels and films with ionic liquids. Carbohydr Polym 79:85–90

    Article  Google Scholar 

  • Taravel MN, Domard A (1993) Relation between the physicochemical characteristics of collagen and its interactions with chitosan: I. Biomaterials 14:930–938

    Article  Google Scholar 

  • Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    Article  Google Scholar 

  • Thakur VK, Singha AS, Kaur I et al (2010) Silane functionalization of saccharum cilliare fibers: thermal, morphological, and physicochemical study. Int J Polym Anal Charact 15:397–414

    Article  Google Scholar 

  • Thakur VK, Yan J, Lin MF et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969

    Article  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber–based polymer composites. Int J Polym Anal Charact 19:256–271

    Article  Google Scholar 

  • Tosi EA, Re E, Ortega ME, Cazzoli AF (2007) Food preservative based on propolis: bacteriostatic activity of propolis polyphenols and flavonoids upon Escherichia coli. Food Chem 104:1025–1029

    Article  Google Scholar 

  • Uddin AJ, Fujie M, Sembo S, Gotoh Y (2012) Outstanding reinforcing effect of highly oriented chitin whiskers in PVA nanocomposites. Carbohydr Polym 87:799–805

    Article  Google Scholar 

  • Velickova E, Winkelhausen E, Kuzmanova S, Alves VD, Martins MM (2013) Impact of chitosan-beeswax edible coatings on ̃the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT Food Sci Technol 52:80–92

    Article  Google Scholar 

  • Vimaladevi S, Panda SK, Xavier KA, Bindu J (2015) Packaging performance of organic acid incorporated chitosan films on dried anchovy (Stolephorus indicus). Carbohydr Polym 127:189–194

    Article  Google Scholar 

  • Wagh VD (2013) Propolis: a wonder bees product and its pharmacological potentials. Adv Pharm Sci 308249 (11 pp)

    Google Scholar 

  • Wan YZ, Luo H, He F, Liang H, Huang Y, Li XL (2009) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Comp Sci Technol 69:1212–1217

    Article  Google Scholar 

  • Wang H, Qian J, Ding F (2018) Emerging chitosan-based films for food packaging applications. J Agric Food Chem 66:395–413

    Article  Google Scholar 

  • Wilhelm HM, Sierakowski MR, Souza GP, Wypych F (2003) Starch films reinforced with mineral clay. Carbohydr Polym 52:101–110

    Article  Google Scholar 

  • Woranucha S, Yoksana R (2013) Eugenol-loaded chitosan nanoparticles: II. Application in biobased plastics for active packaging. Carbohydr Polym 96:586–592

    Article  Google Scholar 

  • Wu T, Yan J (2013) Porous CNTs/chitosan composite with lamellar structure prepared by icetemplating. In: Proceedings of SPIE-the international society for optical engineering, 8923, art no 89233A

    Google Scholar 

  • Wu J, Lin J, Zhou M, Wei C (2000) Synthesis and properties of starch-graftpolyacrylamide/clay superabsorbent composite. Macromol Rapid Commun 21:1032–1034

    Article  Google Scholar 

  • Xiao W, Xu J, Liu X, Hu Q, Huang J (2013) Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. J Mater Chem B 1:3477–3485

    Article  Google Scholar 

  • Xie Q, Hu X, Hu T, Xiao P, Xu Y, Leffew KW (2015) Polytrimethylene terephthalate: an example of an industrial polymer platform development in China. Macromol React Eng 9:401–408

    Article  Google Scholar 

  • Yu JG, Zhao XH, Yang H et al (2014) Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci Total Environ 482–483:241–251

    Article  Google Scholar 

  • Yuceer M, Caner C (2014) Antimicrobial lysozyme-chitosan coatings affect functional properties and shelf life of chicken eggs during storage. J Sci Food Agric 94:153–162

    Article  Google Scholar 

  • Zabihzadeh SM (2010) Water uptake and flexural properties of natural filler/hdpe composites. BioResources 5:316–323

    Google Scholar 

  • Zhang Y, Zhang M, Yang H (2015) Postharvest chitosan-g-salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage. Food Chem 174:558–563

    Article  Google Scholar 

  • Zhou Q, Malm E, Nilsson H et al (2009) Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating. Soft Matter 5:4124–4130

    Article  Google Scholar 

  • Zhuang X, Cheng B, Kang W, Xu X (2010) Electrospun chitosan/gelatin nanofibers containing silver nanoparticles. Carbohydr Polym 82:524–527

    Article  Google Scholar 

  • Zuraida A, Yusliza Y, Anuar H, Mohd Khairul Muhaimin R (2012) The effect of water and citric acid on sago starch bio-plastics. Int Food Res J 19:715–719

    Google Scholar 

Download references

Acknowledgements

Drs. FM and HAAL are grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruq Mohammad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammad, F., Arfin, T., Bwatanglang, I.B., Al-lohedan, H.A. (2019). Starch-Based Nanocomposites: Types and Industrial Applications. In: Sanyang, M., Jawaid, M. (eds) Bio-based Polymers and Nanocomposites . Springer, Cham. https://doi.org/10.1007/978-3-030-05825-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05825-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05824-1

  • Online ISBN: 978-3-030-05825-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics