Skip to main content

Nanofibrillated Cellulose-Based Nanocomposites

  • Chapter
  • First Online:
Bio-based Polymers and Nanocomposites

Abstract

Nanofibrillated cellulose (NFC), a form of nanocellulose, is currently recommended to be utilized in a wide of industrial applications like food packaging, printing, paper, biomedical, and nanocomposite materials. Their exploitation is not a coincidence, but a fruitful result of many studies showing that NFCs have exciting characteristics such as renewable, sustainable, recyclable, the high length-to-diameter ratio (aspect ratio), and high mechanical properties at the nanometric scale. This chapter is a boon to show the added value of NFCs and their applications in nanocomposites materials. To do this, this content deals with two parts: the first one focuses on the extraction of the NFCs from the cellulosic fiber, their structures, and the processes allowing to modify/treated nanocellulose surface to make it compatible with the polymer matrix. In the second part, focused on the manufacturing process of nanocomposites, their properties and the industrial applications are discussed in depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdellaoui H, Echaabi J (2014) Rheological models for modeling the viscoelastic behavior in liquid composite molding processes (LCM) review. J Reinf Plast Compos 33(8):1–19

    Article  Google Scholar 

  • Abdellaoui H, Bensalah H, Echaabi J, Bouhfid R, el kacem Qaiss A (2015a) Fabrication, characterization and modelling of laminated composites based on woven jute fibres reinforced epoxy resin. Mater Des 68:104–113

    Article  Google Scholar 

  • Abdellaoui H, Bouhfid R, Echaabi J, el kacem Qaiss A (2015b) Experimental and modeling study of viscoelastic behaviour of woven dried jute under compressive stress. J Reinf Plast Compos 34(5):405–420

    Article  Google Scholar 

  • Abdellaoui H, Bensalah H, Raji M, Rodrigue D, Bouhfid R, el kacem Qaiss A (2017) Laminated epoxy biocomposites based on clay and jute fibers. J Bionic Eng 14(2):379–389

    Article  Google Scholar 

  • Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67(7–8):1627–1639

    Article  Google Scholar 

  • Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300(1):10–24

    Article  Google Scholar 

  • Ait Laaziz S, Raji M, Hilali E, Essabir H, Rodrigue D, Bouhfid R (2017) Bio-composites based on polylactic acid and Argan nut shell: production and properties. Int J Biol Macromol 104:30–42

    Article  Google Scholar 

  • Albu MG, Vuluga Z, Panaitescu DM, Vuluga DM, Căşărică A, Ghiurea M (2014) Morphology and thermal stability of bacterial cellulose/collagen composites. Cent Eur J Chem 12(9):968–975

    Article  Google Scholar 

  • Alwani MS, Abdul Khalil HPS, Sulaiman O, Islam MN, Dungani R (2014) An approach to using agricultural waste fibres in biocomposites application: thermogravimetric analysis and activation energy study. BioResources 9(1):218–230

    Google Scholar 

  • Araújo JR, Waldman WR, De Paoli MA (2008) Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polym Degrad Stab 93(10):1770–1775

    Article  Google Scholar 

  • Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442

    Article  Google Scholar 

  • Ben Azouz K, Ramires EC, Van den Fonteyne W, El Kissi N, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1(1):236–240

    Article  Google Scholar 

  • Benyahia A, Merrouche A, Rokbi M, Kouadri Z (2013) Study the effect of alkali treatment of natural fibers on the mechanical behavior of the composite unsaturated polyester-fiber Alfa abstract. 21ème Congrès Français de Mécanique, 1–6

    Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94(1):154–169

    Article  Google Scholar 

  • Doktor G, Fakult N, Ashraf H, Asran S, Sayed A, Gutachter K, Michler GH (2011) Electrospinning of polymeric nanofibers and nanocomposite materials: fabrication, physicochemical characterization and medical applications

    Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  Google Scholar 

  • El Makssoudi A, Abdellaoui H, El Ouatib R, Tahiri M (2014) Development of composite materials based on expanded perlite and plastic wastes. Mechanic-chemical properties. In: 2nd annual international conference on chemistry, chemical engineering and chemical process (CCECP 2014), pp 38–46

    Google Scholar 

  • Erbas Kiziltas E, Kiziltas A, Bollin SC, Gardner DJ (2015) Preparation and characterization of transparent PMMA-cellulose-based nanocomposites. Carbohyd Polym 127:381–389

    Article  Google Scholar 

  • Essabir H, Hilali E, Elgharad A, El Minor H, Imad A, Elamraoui A, Al Gaoudi O (2013) Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles. Mater Des 49:442–448

    Article  Google Scholar 

  • Essabir H, Bensalah MO, Rodrigue D, Bouhfid R, el kacem Qaiss A (2016a) Biocomposites based on Argan nut shell and a polymer matrix: effect of filler content and coupling agent. Carbohyd Polym 143:70–83

    Article  Google Scholar 

  • Essabir H, Boujmal R, Bensalah MO, Rodrigue D, Bouhfid R, el kacem Qaiss A (2016b) Mechanical and thermal properties of hybrid composites: oil-palm fiber/clay reinforced high density polyethylene. Mech Mater 98:36–43

    Article  Google Scholar 

  • Essabir H, Raji M, Essassi EM, Rodrigue D, Bouhfid R, el kacem Qaiss A (2017) Morphological, thermal, mechanical, electrical and magnetic properties of ABS/PA6/SBR blends with Fe3O4 nano-particles. J Mater Sci Mater Electron 28(22):17120–17130

    Google Scholar 

  • Farias D, Cordeiro R, Canabarro BR, Scholz S, Sim RA (2017) Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites [João Gabriel Guimarães de Farias a, Rafael Cordeiro Cavalcante a]. Carbohydr Polym 165:429–436

    Google Scholar 

  • Gacitua EW, Ballerini AA, Jinwen Z (2005) Polymer nanocomposites: synthetic and natural fillers. Maderas Ciencia Y Tecnología 7(3):159–178

    Article  Google Scholar 

  • Gantayat S, Rout D, Swain SK (2017) Structural and mechanical properties of functionalized carbon nanofiber/epoxy nanocomposites. Mater Today Proc 4(8):9060–9064

    Article  Google Scholar 

  • Grumezescu AM (2017). Food packaging nanotechnology in the agri-food industry, vol 7. Elsevier Inc, Netherlands, p 805

    Google Scholar 

  • Gupta G, Gupta A, Dhanola A, Raturi A (2016) Mechanical behavior of glass fiber polyester hybrid composite filled with natural fillers. In: IOP conference series: materials science and engineering, vol 149. pp 12091

    Article  Google Scholar 

  • Hakeem KR, Mohammad J, Alothman Othman Y (2011) Agricultural biomass based potential materials. Springer International Publishing, Switzerland

    Google Scholar 

  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2011) Biological pretreatment of cellulose: enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Biores Technol 102:2910–2915

    Article  Google Scholar 

  • Hamour N, Boukerrou A, Djidjelli H, Maigret JE, Beaugrand J (2015) Effects of MAPP compatibilization and acetylation treatment followed by hydrothermal aging on polypropylene alfa fiber composites. Int J Polym Sci

    Google Scholar 

  • Hedayati M, Salehi M, Bagheri R, Panjepour M, Maghzian A (2011) Ball milling preparation and characterization of poly (ether ether ketone)/surface modi fi. Powder Technol 207(1–3):296–303

    Article  Google Scholar 

  • Hietala M, Mathew AP, Oksman K (2012) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 1–7

    Google Scholar 

  • Hoidy WH, Al-mulla EAJ (2013) Study of preparation for co-polymer nanocomposites using PLA/LDPE/CTAB modified clay. Iraqi Nat J Chem 49:61–72

    Google Scholar 

  • Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects: review. Biores Technol 199:103–112

    Article  Google Scholar 

  • Khalil HPSA, Bhat AH, Bakar AA, Tahir PM, Zaidul ISM, Jawaid M (2015) Cellulosic nanocomposites from natural fibers for medical applications: a review. In: Handbook of polymer nanocomposites. Processing, performance and application: volume C: Polymer nanocomposites of cellulose nanoparticles. Springer, Berlin, pp 475–511

    Google Scholar 

  • Khanam PN, Ponnamma D, AL-Madeed MA (2015) Electrical properties of graphene polymer nanocomposites. In: Graphene-based polymer nanocomposites in electronics, Springer series on polymer and composite materials, pp 25–47

    Google Scholar 

  • Kim H, Hong J, Pyo S (2018) Acoustic characteristics of sound absorbable high performance concrete. Appl Acoust 138(April):171–178

    Article  Google Scholar 

  • Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42(4):856–873

    Article  Google Scholar 

  • Kumar R, Obrai S, Sharma A (2011) Chemical modifications of natural fiber for composite material. Pelagia Res Libr 2(4):219–228

    Google Scholar 

  • Le Duigou A, Davies P, Baley C (2010) Interfacial bonding of flax fibre/poly(l-lactide) bio-composites. Compos Sci Technol 70(2):231–239

    Article  Google Scholar 

  • Li X, Panigrahi S (2004) Flax fiber-reinforced composites and the effect of chemical treatments on their properties. Appl Eng Agric 25(3):1–11

    Google Scholar 

  • Menon MP, Selvakumar R, Kumar PS, Ramakrishna S (2017) Extraction and modification of cellulose nanofibers derived from biomass for environmental application. Roy Soc Chem 7:42750–42773

    Google Scholar 

  • Mir SS, Nafsin N, Hasan M, Hasan N, Hassan A (2013) Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Mater Des 52:251–257

    Article  Google Scholar 

  • Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 2015:1–15

    Article  Google Scholar 

  • Mohkami M, Talaeipour M (2011) Investigation of the chemical structure of carboxylated and carboxymethylated fibers from waste paper via XRD and FTIR analysis. BioResources 6(2):1988–2003

    Google Scholar 

  • Niazi MBK, Jahan Z, Berg SS, Gregersen ØW (2017) Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes. Carbohyd Polym 177:258–268

    Article  Google Scholar 

  • Nunna S, Chandra PR, Shrivastava S, Jalan AK (2012) A review on mechanical behavior of natural fiber based hybrid composites. J Reinf Plast Compos 31(11):759–769

    Article  Google Scholar 

  • Pracella M, Haque MMU, Alvarez V (2010) Functionalization, compatibilization and properties of polyolefin composites with natural fibers. Polymers 2(4):554–574

    Article  Google Scholar 

  • Qu T, Zhang X, Gu X, Han L, Ji G, Chen X, Xiao W (2017) Ball milling for biomass fractionation and pretreatment with aqueous hydroxide solutions. Am Chem Soc 5:7733–7742

    Google Scholar 

  • Raji M, Essabir H, Essassi EM, Rodrigue D, Bouhfid R, el kacem Qaiss A (2016) Morphological, thermal, mechanical, and rheological properties of high density polyethylene reinforced with illite clay. Polym Polym Compos 16(2):101–113

    Google Scholar 

  • Raji M, Essabir H, Bouhfid R, el kacem Qaiss A (2017a) Impact of chemical treatment and the manufacturing process on mechanical, thermal, and rheological properties of natural fibers-based composites. In: Handbook of composites from renewable materials. Wiley, Hoboken, pp 225–252

    Chapter  Google Scholar 

  • Raji M, Essabir H, Rodrigue D, Bouhfid R, el kacem Qaiss A (2017b) Influence of graphene oxide and graphene nanosheet on the properties of polyvinylidene fluoride nanocomposites. Polym Polym Compos. https://doi.org/10.1002/pc.24292

    Article  Google Scholar 

  • Raji M, Mekhzoum MEM, Rodrigue D, el kacem Qaiss A, Bouhfid R (2018) Effect of silane functionalization on properties of polypropylene/clay nanocomposites. Compos Part B. https://doi.org/10.1016/j.compositesb.2018.04.013

    Article  Google Scholar 

  • Saba N, Tahir P, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273

    Article  Google Scholar 

  • Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, Sain M (2017) Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 102:822–828

    Article  Google Scholar 

  • Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363

    Article  Google Scholar 

  • Sdrobi A, Darie RN, Totolin M, Cazacu G, Vasile C (2012) Low density polyethylene composites containing cellulose pulp fibers. Compos B Eng 43(4):1873–1880

    Article  Google Scholar 

  • Shauddin SM, Shaha CK, Khan MA (2014) Effects of fiber inclusion and γ radiation on physico-mechanical properties of jute caddies reinforced waste polyethylene composite. J Polym Biopolym Phys Chem 2(4):91–97

    Google Scholar 

  • Singh TJ, Samanta S (2014) Characterization of natural fiber reinforced composites-bamboo and sisal: a review. IJRET: Int J Res Eng Technol 3(7):187–195

    Google Scholar 

  • Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos A Appl Sci Manuf 39(5):875–886

    Article  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  • Solyman WSE, Nagiub HM, Alian NA, Shaker NO, Kandil UF (2017) Synthesis and characterization of phenol/formaldehyde nanocomposites: studying the effect of incorporating reactive rubber nanoparticles or Cloisite-30B nanoclay on the mechanical properties, morphology. J Radiat Res Appl Sci 10(1):72–79

    Google Scholar 

  • Song J, Rojas OJ (2013) Approaching super-hydrophobicity from cellulosic materials: a review. Paper Chem 28(2):216–238

    Google Scholar 

  • Stocchi A, Lauke B, Vázquez A, Bernal C (2007) A novel fiber treatment applied to woven jute fabric/vinylester laminates. Compos A Appl Sci Manuf 38(5):1337–1343

    Article  Google Scholar 

  • Taj S, Munawar MA, Khan S (2007) Natural fiber-reinforced polymer composites: review. Proc Pakistan Acad Sci 44:129–144

    Google Scholar 

  • Thomas MG, Abraham E, Jyotishkumar P, Maria HJ, Pothen LA, Thomas S (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol 81:768–777

    Article  Google Scholar 

  • Tian C, Yi J, Wu Y, Wu Q, Qing Y, Wang L (2016) Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments. Carbohyd Polym 136:485–492

    Article  Google Scholar 

  • Turbak A, Snyder F, Sandberg K (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: Sarko A (ed) Proceedings of the ninth cellulose conference, Applied polymer symposium, vol 37. Wiley, New York, pp 815–827

    Google Scholar 

  • Vatai G (2010) Separation technologies in the processing of fruit juices. In: Separation, extraction and concentration processes in the food, beverage and nutraceutical industries. Woodhead Publishing series in food science, technology and nutrition, pp 381–395. Woodhead Publishing Limited, UK

    Chapter  Google Scholar 

  • Vazquez A, Foresti M, Moran J, Cyras V (2015) Extraction and production of cellulose nanofibers. In: Handbook of polymer nanocomposites. Processing, performance and application, pp 81–118

    Google Scholar 

  • Wang W, Sabo RC, Mozuch MD, Kersten P, Jin JYZY (2015) Physical and mechanical properties of cellulose nanofibril films from bleached eucalyptus pulp by endoglucanase treatment and microfluidization. J Polym Environ 23:551–558

    Article  Google Scholar 

  • Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 41(7):806–819

    Article  Google Scholar 

  • Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES (2015) Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application. Defence Technol 12(1):52–58

    Article  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788

    Article  Google Scholar 

  • Zari N, Raji M, El Mghari H, Bouhfid R, el kacem Qaiss A (2018) Nanoclay and polymer-based nanocomposites: materials for energy efficiency. In: Polymer-based nanocomposites for energy and environmental applications. Woodhead, UK, pp 75–103

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abou el kacem Qaiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdellaoui, H., Raji, M., Essabir, H., Bouhfid, R., Qaiss, A. (2019). Nanofibrillated Cellulose-Based Nanocomposites. In: Sanyang, M., Jawaid, M. (eds) Bio-based Polymers and Nanocomposites . Springer, Cham. https://doi.org/10.1007/978-3-030-05825-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05825-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05824-1

  • Online ISBN: 978-3-030-05825-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics