Skip to main content

Recruitment-Based Robotic Colony Allocation

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 9))

Abstract

Robotic colonies for distributed field operations require intelligent algorithms for allocating assets based on time-varying task requirements. Agricultural applications, including crop pollination, involve dynamic schedules that are unknown a priori; thus, an effective colony must characterize task completion and respond to perceived changes. Insect colonies rely on individuals’ observations to allocate their workforces to tasks, such as foraging in the richest flower patches. Biologically-inspired strategies for gathering observations while providing field coverage were formulated and integrated into a colony recruitment model. The strategies’ coverage results and efficiency were evaluated with varying task schedules, colony placements, and multiple colonies, yielding 50–100% pollination across all independent variables. Splitting a single colony into multiple small colonies improved coverage and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becher, M.A., Grimm, V., Knapp, J., Horn, J., Twiston-Davies, G., Osborne, J.L.: BEESCOUT: a model of bee scouting behaviour and a software tool for characterizing nectar/pollen landscapes for BEEHAVE. Ecol. Model. 340, 126–133 (2016)

    Article  Google Scholar 

  2. Beekman, M., Ratnieks, F.L.W.: Long-range foraging by the honey-bee, Apis mellifera L. Funct. Ecol. 14(4), 490–496 (1998). isi:000089054800011

    Article  Google Scholar 

  3. Berman, S., Halász, Á., Hsieh, M.A., Kumar, V.: Optimized stochastic policies for task allocation in swarms of robots. IEEE Trans. Robot. 25(4), 927–937 (2009)

    Article  Google Scholar 

  4. Berman, S., Nagpal, R., Halász, Á.: Optimization of stochastic strategies for spatially inhomogeneous robot swarms: a case study in commercial pollination. In: IEEE International Conference on Intelligent Robots and Systems (2011)

    Google Scholar 

  5. Bodi, M., Thenius, R., Szopek, M., Schmickl, T., Crailsheim, K.: Interaction of robot swarms using the honeybee-inspired control algorithm BEECLUST. Math. Comput. Modell. Dyn. Syst. 18(1), 87–100 (2012)

    Article  MATH  Google Scholar 

  6. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  7. Camazine, S.: The regulation of pollen foraging by honey bees: how foragers assess the colony’s need for pollen. Behav. Ecol. Sociobiol. 32(4), 265–272 (1993)

    Article  Google Scholar 

  8. Cody, J.R., Adams, J.A.: An evaluation of quorum sensing mechanisms in collective value-sensitive site selection. In: IEEE International Symposium on Multi-robot and Multi-agent Systems, pp. 40–47 (2017)

    Google Scholar 

  9. Cunningham, S.A., Fournier, A., Neave, M.J., Le Feuvre, D.: Improving spatial arrangement of honeybee colonies to avoid pollination shortfall and depressed fruit set. J. Appl. Ecol. 53(2), 350–359 (2016)

    Article  Google Scholar 

  10. Díaz, P.C., Arenas, A., Fernández, V.M., Susic Martin, C., Basilio, A.M., Farina, W.M.: Honeybee cognitive ecology in a fluctuating agricultural setting of apple and pear trees. Behav. Ecol. 24(5), 1058–1067 (2013)

    Article  Google Scholar 

  11. Dornhaus, A., Klügl, F., Oechslein, C., Puppe, F., Chittka, L.: Benefits of recruitment in honey bees: effects of ecology and colony size in an individual-based model. Behav. Ecol. 17(3), 336–344 (2006)

    Article  Google Scholar 

  12. Goulson, D.: Why do pollinators visit proportionally fewer flowers in large patches? Oikos 91(3), 485–492 (2000)

    Article  Google Scholar 

  13. Greggers, U., Menzel, R.: Memory dynamics and foraging strategies of honeybees. Behav. Ecol. Sociobiol. 32(1), 17–29 (1993)

    Article  Google Scholar 

  14. Gyan, K.Y., Woodell, S.R.J.: Analysis of insect pollen loads and pollination efficiency of some common insect visitors of four species of woody Rosaceae. Funct. Ecol. 1(3), 269–274 (1987). http://www.jstor.org/stable/2389430

    Article  Google Scholar 

  15. Hecker, J.P., Moses, M.E.: Beyond pheromones: evolving error-tolerant, flexible, and scalable ant-inspired robot swarms. Swarm Intell. 9(1), 43–70 (2015)

    Google Scholar 

  16. Klatt, B.K., Holzschuh, A., Westphal, C., Clough, Y., Smit, I., Pawelzik, E., Tscharntke, T.: Bee pollination improves crop quality, shelf life and commercial value. Proc. R. Soc. B: Biol. Sci. 281(1775) (2013). http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2013.2440

    Article  Google Scholar 

  17. Krieger, M.J.B., Billeter, J.B., Keller, L.: Ant-like task allocation and recruitment in cooperative robots. Nature 406(6799), 992–995 (2000)

    Article  Google Scholar 

  18. Pitonakova, L., Crowder, R., Bullock, S.: Information flow principles for plasticity in foraging robot swarms. Swarm Intell. 10(1), 33–63 (2016)

    Article  Google Scholar 

  19. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design pattern for decentralised decision making. PLoS ONE 10(10) (2015)

    Article  Google Scholar 

  20. Riley, J.R., Greggers, U., Smith, A.D., Reynolds, D.R., Menzel, R.: The flight paths of honeybees recruited by the waggle dance. Nature 435(7039), 205 (2005)

    Article  Google Scholar 

  21. Rucker, R.R., Thurman, W.N., Burgett, M.: Honey bee pollination markets and the internalization of reciprocal benefits. Am. J. Agric. Econ. 94(4), 956–977 (2012)

    Article  Google Scholar 

  22. Sampson, B.J., Cane, J.H.: Pollination efficiencies of three bee (hymenoptera: Apoidea) species visiting rabbiteye blueberry. J. Econ. Entomol. 93(6), 1726–1731 (2000)

    Article  Google Scholar 

  23. Seeley, T.D.: Division of labor between scouts and recruits in honeybee foraging. Behav. Ecol. Sociobiol. 12(3), 253–259 (1983)

    Article  Google Scholar 

  24. Seeley, T.D.: Social foraging by honeybees: how colonies allocate foragers among patches of flowers. Behav. Ecol. Sociobiol. 19(5), 343–354 (1986)

    Article  Google Scholar 

  25. Seeley, T.D., Mikheyev, A.S., Pagano, G.J.: Dancing bees tune both duration and rate of waggle-run production in relation to nectar-source profitability. J. Compar. Physiol. A 186(9), 813–819 (2000)

    Article  Google Scholar 

  26. Seeley, T.D., Visscher, P.K., Schlegel, T., Hogan, P.M., Franks, N.R., Marshall, J.A.R.: Stop signals provide cross inhibition in collective decision-making by honeybee swarms. Science 335(6064), 108–111 (2012)

    Article  Google Scholar 

  27. Sumpter, D.J.T.: Collective Animal Behavior. Princeton University Press (2010)

    Google Scholar 

  28. Thenius, R., Schmickl, T., Crailsheim, K.: Optimisation of a honeybee-colony’s energetics via social learning based on queuing delays. Connect. Sci. 20(2–3), 193–210 (2008)

    Article  Google Scholar 

  29. Tonutti, P., Bargioni, G., Cossio, F., Ramina, A.: Effective pollination period and ovule longevity in prunus avium l. Adv. Hortic. Sci. 5(4), 1000–1006 (1991)

    Google Scholar 

  30. Valentini, G., Hamann, H., Dorigo, M.: Global-to-local design for self-organized task allocation in swarms. Technical report. IRIDIA, Universite Libre de Bruxelles, Bruxelles, Belgium (2016)

    Google Scholar 

  31. vanEngelsdorp, D., Evans, J.D., Saegerman, C., Mullin, C., Haubruge, E., et al.: Colony collapse disorder: a descriptive study. PLoS ONE 4(8) (2009)

    Article  Google Scholar 

  32. Von Frisch, K.: The Dance Language and Orientation of Bees (1967)

    Google Scholar 

  33. de Vries, H., Biesmeijer, J.C.: Modelling collective foraging by means of individual behaviour rules in honey-bees. Behav. Ecol. Sociobiol. 44(2), 109–124 (1998)

    Article  Google Scholar 

  34. Wedde, H.F., Farooq, M., Pannenbaecker, T., Vogel, B., Mueller, C., Meth, J., Jeruschkat, R.: BeeAdHoc: an energy efficient routing algorithm for mobile ad hoc networks inspired by bee behavior. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 153–160. ACM(2005)

    Google Scholar 

  35. Wedde, H.F., Farooq, M., Zhang, Y.: BeeHive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior. In: International Workshop on Ant Colony Optimization and Swarm Intelligence, pp. 83–94. Springer (2004)

    Google Scholar 

  36. Wenner, A.: The flight speed of honeybees: a quantitative approach. J. Apic. Res. 2(1), 25–32 (1963)

    Article  Google Scholar 

  37. Whiting, M.D., Salazar, M.R., Hoogenboom, G.: Development of bloom phenology models for tree fruits. In: IX International Symposium on Modelling in Fruit Research and Orchard Management, vol. 1068, pp. 107–112 (2011)

    Google Scholar 

  38. Winfree, R.: Pollinator-dependent crops: an increasingly risky business. Curr. Biol. 18(20), 968–969 (2008). http://dx.doi.org/10.1016/j.cub.2008.09.010

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a Graduate Teaching Assistantship from the College of Engineering at Oregon State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chloe Fleming .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fleming, C., Adams, J.A. (2019). Recruitment-Based Robotic Colony Allocation. In: Correll, N., Schwager, M., Otte, M. (eds) Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-05816-6_6

Download citation

Publish with us

Policies and ethics