Skip to main content

Deploying Elbrus VLIW CPU Ecosystem for Materials Science Calculations: Performance and Problems

  • Conference paper
  • First Online:
  • 638 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 965))

Abstract

Modern Elbrus-4S and Elbrus-8S processors show floating point performance comparable to the popular Intel processors in the field of high-performance computing. Tasks oriented to take advantage of the VLIW architecture show even greater efficiency on Elbrus processors. In this paper the efficiency of the most popular materials science codes in the field of classical molecular dynamics and quantum-mechanical calculations is considered. A comparative analysis of the performance of these codes on Elbrus processor and other modern processors is carried out.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tyutlyaeva, E., Konyukhov, S., Odintsov, I., Moskovsky, A.: The elbrus platform feasibility assessment for high-performance computations. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2016. CCIS, vol. 687, pp. 333–344. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55669-7_26

    Chapter  Google Scholar 

  2. Kozhin, A.S., et al.: The 5th generation 28nm 8-Core VLIW Elbrus-8C processor architecture. In: Proceedings - 2016 International Conference on Engineering and Telecommunication, EnT 2016, pp. 86–90 (2017). https://doi.org/10.1109/EnT.2016.25

  3. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). https://doi.org/10.1103/PhysRevB.47.558

    Article  Google Scholar 

  4. Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994). https://doi.org/10.1103/PhysRevB.49.14251

    Article  Google Scholar 

  5. Kresse, G., Furthmuller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  6. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  7. Stegailov, V.V., Orekhov, N.D., Smirnov, G.S.: HPC hardware efficiency for quantum and classical molecular dynamics. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 469–473. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21909-7_45

    Chapter  Google Scholar 

  8. Aristova, N.M., Belov, G.V.: Refining the thermodynamic functions of scandium triflouride scf3 in the condensed state. Russ. J. Phys. Chem. A 90(3), 700–703 (2016). https://doi.org/10.1134/S0036024416030031

    Article  Google Scholar 

  9. Kochikov, I.V., Kovtun, D.M., Tarasov, Y.I.: Electron diffraction analysis for the molecules with degenerate large amplitude motions: intramolecular dynamics in arsenic pentafluoride. J. Mol. Struct. 1132, 139–148 (2017). https://doi.org/10.1016/j.molstruc.2016.09.064

    Article  Google Scholar 

  10. Minakov, D.V., Levashov, P.R.: Melting curves of metals with excited electrons in the quasiharmonic approximation. Phys. Rev. B 92, 224,102 (2015). https://doi.org/10.1103/PhysRevB.92.224102

    Article  Google Scholar 

  11. Minakov, D., Levashov, P.: Thermodynamic properties of lid under compression with different pseudopotentials for lithium. Comput. Mater. Sci. 114, 128–134 (2016). https://doi.org/10.1016/j.commatsci.2015.12.008

    Article  Google Scholar 

  12. Bethune, I.: Ab initio molecular dynamics. Introduction to Molecular Dynamics on ARCHER (2015)

    Google Scholar 

  13. Hutchinson, M.: Vasp on gpus. when and how. GPU technology theater, SC15 (2015)

    Google Scholar 

  14. Zhao, Z., Marsman, M.: Estimating the performance impact of the MCDRAM on KNL using dual-socket Ivy Bridge nodes on Cray XC30. In: Proceedings of the Cray User Group — 2016 (2016)

    Google Scholar 

  15. Wende, F., Marsman, M., Steinke, T.: On enhancing 3D-FFT performance in VASP. In: CUG Proceedings, p. 9 (2016)

    Google Scholar 

  16. Burtscher, M., Kim, B.D., Diamond, J., McCalpin, J., Koesterke, L., Browne, J.: Perfexpert: an easy-to-use performance diagnosis tool for HPC applications. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2010, pp. 1–11. IEEE Computer Society, Washington, DC (2010). https://doi.org/10.1109/SC.2010.41

  17. Rane, A., Browne, J.: Enhancing performance optimization of multicore/multichip nodes with data structure metrics. ACM Trans. Parallel Comput. 1(1), 3:1–3:20 (2014). https://doi.org/10.1145/2588788

    Article  Google Scholar 

  18. Stanisic, L., Mello Schnorr, L.C., Degomme, A., Heinrich, F.C., Legrand, A., Videau, B.: Characterizing the performance of modern architectures through opaque benchmarks: pitfalls learned the hard way. In: IPDPS 2017–31st IEEE International Parallel & Distributed Processing Symposium (RepPar Workshop), Orlando, US, pp. 1588–1597 (2017)

    Google Scholar 

  19. Baker, M.: A study of improving the parallel performance of VASP. Ph.D. thesis, East Tennessee State University (2010)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Joint Supercomputer Centre of Russian Academy of Sciences (http://www.jscc.ru) for the access to the supercomputer MVS1P5. The authors acknowledge JSC MCST (http://www.msct.ru) for the access to the servers with Elbrus CPUs. The authors are grateful to Vyacheslav Vecher for the help with calculations based on hardware counters.

The work was supported by the grant No. 14-50-00124 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Timofeev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stegailov, V., Timofeev, A. (2019). Deploying Elbrus VLIW CPU Ecosystem for Materials Science Calculations: Performance and Problems. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2018. Communications in Computer and Information Science, vol 965. Springer, Cham. https://doi.org/10.1007/978-3-030-05807-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05807-4_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05806-7

  • Online ISBN: 978-3-030-05807-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics