Skip to main content

INMOST Parallel Platform for Mathematical Modeling and Applications

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 965))

Abstract

In the present work we present INMOST, the programming platform for mathematical modelling and its application to a couple of practical problems. INMOST consists of a number of tools: mesh and mesh data manipulation, automatic differentiation, linear solvers, support for multiphysics modelling. The application of INMOST to black-oil reservoir simulation and blood coagulation problem is considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. INMOST - a toolkit for distributed mathematical modeling. http://www.inmost.org. Accessed 15 Apr 2018

  2. COMSOL Multiphysics Reference Manual, version 5.3, COMSOL Inc. www.comsol.com. Accessed 30 May 2018

  3. ANSYS FLUENT. https://www.ansys.com/products/fluids/ansys-fluent. Accessed 30 May 2018

  4. STAR-CD. https://mdx.plm.automation.siemens.com/star-cd. Accessed 30 May 2018

  5. Flemisch, B., et al.: DuMux: DUNE for multi-phase, component, scale, physics,... flow and transport in porous media. Adv. Water Resour. 34(9), 1102–1112 (2011)

    Google Scholar 

  6. The Open Porous Media (OPM) initiative encourages open innovation and reproducible research for modeling and simulation of porous media processes. https://opm-project.org. Accessed 30 May 2018

  7. Elmer - Finite Element Solver for Multiphysical Problems. https://www.csc.fi/web/elmer. Accessed 30 May 2018

  8. Patzák, B.: OOFEM-an object-oriented simulation tool for advanced modeling of materials and structures. Acta Polytech. 52(6), 59–66 (2012)

    Google Scholar 

  9. OpenFOAM is the free, open source CFD software. www.openfoam.com. Accessed 30 May 2018

  10. SU2 is an open-source collection of software tools written in C++ and Python for the analysis of partial differential equations (PDEs) and PDE-constrained optimization problems on unstructured meshes with state-of-the-art numerical methods. https://su2code.github.io. Accessed 30 May 2018

  11. COOLFluiD is a component based scientific computing environment that handles high-performance computing problems with focus on complex computational fluid dynamics (CFD) involving multiphysics phenomena. https://github.com/andrealani/COOLFluiD/wiki. Accessed 30 May 2018

  12. Babur, Ö., Smilauer, V., Verhoeff, T., van den Brand, M.: A survey of open source multiphysics frameworks in engineering. Procedia Comput. Sci. 51, 1088–1097 (2015)

    Article  Google Scholar 

  13. Keyes, D.E., et al.: Multiphysics simulations: challenges and opportunities. Int. J. High Perform. Comput. Appl. 27(1), 4–83 (2013)

    Article  Google Scholar 

  14. PETSc is a suite of data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial differential equations. http://www.mcs.anl.gov/petsc. Accessed 15 Apr 2018

  15. Trilinos - platform for the solution of large-scale, complex multi-physics engineering and scientific problems. http://trilinos.org/. Accessed 15 Apr 2018

  16. SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations. http://crd-legacy.lbl.gov/xiaoye/SuperLU/. Accessed 15 Apr 2018

  17. Distributed and Unified Numerics Environment. https://dune-project.org/. Accessed 30 May 2018

  18. INM RAS cluster. http://cluster2.inm.ras.ru. Accessed 15 Apr 2018

  19. Terekhov, K.M.: Application of unstructured octree grid to the solution of filtration and hydrodynamics problems. Ph.D. thesis, INM RAS (2013). (in Russian)

    Google Scholar 

  20. INMOST - programming platform and graphical environment for development of parallel numerical models on general grids. Vassilevski, Yu.V., Konshin, I.N., Kopytov, G.V., Terekhov, K.M.: Moscow University Press, 144 p. (2013). (in Russian)

    Google Scholar 

  21. Bagaev, D.V., Burachkovskii, A.I., Danilov, A.A., Konshin, I.N., Terekhov, K.M.: Development of INMOST programming platform: dynamic grids, linear solvers and automatic differentiation. Russian Supercomputing Days 2016 (2016)

    Google Scholar 

  22. Danilov, A.A., Terekhov, K.M., Konshin, I.N., Vassilevski, Y.V.: Parallel software platform INMOST: a framework for numerical modeling. Supercomput. Front. Innov. 2(4), 55–66 (2015)

    Google Scholar 

  23. Hu, J.J., Prokopenko, A., Siefert, C.M., Tuminaro, R.S., Wiesner, T.A.: MueLu multigrid framework. http://trilinos.org/packages/muelu. Accessed 15 Apr 2018

  24. SAMG - Efficiently solving large Linear Systems of Equations. https://www.scai.fraunhofer.de/en/business-research-areas/fast-solvers/products/samg.html

  25. Lacroix, S., Vassilevski, Y.V., Wheeler, M.F.: Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS). Numer. Linear Algebr. Appl. 8(8), 537–549 (2001)

    Article  MathSciNet  Google Scholar 

  26. Castelletto, N., White, J.A., Tchelepi, H.A.: Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics. Int. J. Numer. Anal. Methods Geomech. 39(14), 1593–1618 (2015)

    Article  Google Scholar 

  27. Sleijpen, G.L.G., Fokkema, D.R.: BiCGstab (l) for linear equations involving unsymmetric matrices with complex spectrum. Electron. Trans. Numer. Anal. 1(11), 11–32 (1993)

    MathSciNet  MATH  Google Scholar 

  28. Li, N., Saad, Y., Chow, E.: Crout versions of ILU for general sparse matrices. SIAM J. Sci. Comput. 25(2), 716–728 (2003)

    Article  MathSciNet  Google Scholar 

  29. Kaporin, I.E.: High quality preconditioning of a general symmetric positive definite matrix based on its UTU+ UTR+ RTU-decomposition. Numer. Linear Algebr. Appl. 5(6), 483–509 (1998)

    Article  MathSciNet  Google Scholar 

  30. Kaporin, I.E.: Scaling, reordering, and diagonal pivoting in ILU preconditionings. Russ. J. Numer. Anal. Math. Model. 22(4), 341–375 (2007)

    Google Scholar 

  31. Bollhöfer, M.: A robust ILU with pivoting based on monitoring the growth of the inverse factors. Linear Algebr. Appl. 338(1–3), 201–218 (2001)

    Google Scholar 

  32. Aliaga, J.I., Bollhöfer, M., Marti, A.F., Quintana-Orti, E.S.: Exploiting thread-level parallelism in the iterative solution of sparse linear systems. Parallel Comput. 37(3), 183–202 (2011)

    Article  MathSciNet  Google Scholar 

  33. Olschowka, M., Neumaier, A.: A new pivoting strategy for Gaussian elimination. Linear Algebr. Appl. 240, 131–151 (1996)

    Article  MathSciNet  Google Scholar 

  34. Duff, I.S., Koster, J.: The design and use of algorithms for permuting large entries to the diagonal of sparse matrices. SIAM J. Matrix Anal. Appl. 20(4), 889–901 (1999)

    Article  MathSciNet  Google Scholar 

  35. Bunch, J.R., Kaufman, L.: A computational method for the indefinite quadratic programming problem. Linear Algebr. Appl. 34, 341–370 (1980)

    Article  MathSciNet  Google Scholar 

  36. Nikitin, K., Terekhov, K., Vassilevski, Yu.: A monotone nonlinear finite volume method for diffusion equations and multiphase flows. Comput. Geosci. 18(3–4), 311–324 (2014)

    Google Scholar 

  37. Terekhov, K.M., Mallison, B.T., Tchelepi, H.A.: Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem. J. Comput. Phys. 330, 245–267 (2017)

    Article  MathSciNet  Google Scholar 

  38. Shen, F., Kastrup, C. J., Liu, Y., Ismagilov, R.F.: Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate. Arter. Thromb. Vasc. Biol. 28(11), 2035–2041 (2008)

    Google Scholar 

  39. Norne: the full Norne benchmark case, a real field black-oil model for an oil field in the Norwegian Sea. https://opm-project.org/?page_id=559. Accessed 15 Apr 2018

  40. Bouchnita, A.: Mathematical modelling of blood coagulation and thrombus formation under flow in normal and pathological conditions. Ph.D. thesis, Université Lyon 1 - Claude Bernard; Ecole Mohammadia d’Ingénieurs - Université Mohammed V de Rabat - Maroc (2017)

    Google Scholar 

  41. Coon, E.T., Moulton, J.D., Painter, S.L.: Managing complexity in simulations of land surface and near-surface processes. Environ. Model. Softw. 78, 134–149 (2016)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the RFBR grants 17-01-00886, 18-31-20048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Terekhov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Terekhov, K., Vassilevski, Y. (2019). INMOST Parallel Platform for Mathematical Modeling and Applications. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2018. Communications in Computer and Information Science, vol 965. Springer, Cham. https://doi.org/10.1007/978-3-030-05807-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05807-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05806-7

  • Online ISBN: 978-3-030-05807-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics