Skip to main content

Reaction-Diffusion Patterns and Waves: From Chemical Reactions to Cardiac Arrhythmias

  • Chapter
  • First Online:
Book cover Spirals and Vortices

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

Reaction-diffusion processes are behind many instances of pattern formation in chemical reactions and biological systems. Continuum reaction-diffusion equations have proved useful models for a wide variety of pattern dynamics starting with seminal work by Turing on the chemical basis of morphogenesis and by Hodgkin and Huxley on the propagation of electrical impulses along neurons in 1952. This article reviews basic concepts for and applications of reaction-diffusion models with an emphasis on spiral and vortex dynamics, related instabilities like spiral and scroll wave breakup and their potential role in cardiac arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993)

    Google Scholar 

  2. A.M. Turing, The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B 237, 37 (1952)

    Google Scholar 

  3. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117, 500 (1952)

    Google Scholar 

  4. J. Keener, J. Sneyd, Mathematical Physiology (Springer, New York, 1998)

    Google Scholar 

  5. E. Meron, Pattern formation in excitable media. Phys. Rep. 218, 1 (1992)

    Google Scholar 

  6. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445 (1961)

    Google Scholar 

  7. A. Gierer, H. Meinhardt, Theory for biological pattern formation. Kybernetik 12, 30 (1972)

    Google Scholar 

  8. D. Barkley, A model for fast computer simulation of waves in excitable media. Physica D 49, 61 (1991)

    Google Scholar 

  9. M. Bär, M. Eiswirth, Turbulence due to spiral breakup in a continuous excitable medium. Phys. Rev. E 48, 1635 (1993)

    Google Scholar 

  10. R. Kapral, K. Showalter (eds.), Chemical Waves and Patterns (Kluwer, Dordrecht, 1994)

    Google Scholar 

  11. A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behavior (Cambridge University, Cambridge, 1996)

    Google Scholar 

  12. A.N. Zaikin, A.M. Zhabotinsky, Concentration wave propagation in 2-dimensional liquid phase self-oscillating system. Nature 225, 535 (1970)

    Google Scholar 

  13. A.T. Winfree, Spiral waves of chemical activity. Science 175, 634 (1972)

    Google Scholar 

  14. R.J. Field, R.M. Noyes, E. Körös, Oscillations in chemical systems 2: Thorough analysis of temporal oscillations in Bromate-Cerium-Malonic acid system. J. Am. Chem. Soc. 94, 8649 (1972)

    Google Scholar 

  15. S.C. Müller, Th. Plesser, B. Hess, The structure of the core of the spiral wave in the Belousov-Zhabotinsky reaction. Science 230, 661 (1985)

    Google Scholar 

  16. V. Castets, E. Dulos, J. Boissonade, P. de Kepper, Experimental evidence of a sustained standing turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953 (1990)

    Google Scholar 

  17. Q. Ouyang, H.L. Swinney, Transition from a uniform state to hexagonal and striped turing patterns. Nature 352, 610 (1991)

    Article  ADS  Google Scholar 

  18. K.J. Lee, W.D. McCormick, Q. Ouyang, H.L. Swinney, Pattern formation by interacting chemical fronts. Science 261, 183 (1993)

    ADS  Google Scholar 

  19. K.J. Lee, W.D. McCormick, J. Pearson, H.L. Swinney, Experimental observation of self-replicating spots in a reaction-diffusion system. Nature 369, 215 (1994)

    Article  ADS  Google Scholar 

  20. A. Hagberg, E. Meron, Complex patterns in reaction-diffusion systems: a tale of two front instabilities. Chaos 4, 477 (1994)

    Article  ADS  Google Scholar 

  21. S. Jakubith, A. von Oertzen, W. Engel, H.H. Rotermund, G. Ertl, Spatiotemporal concentration patterns in a surface reaction - propagating and standing waves, rotating spirals, and turbulence. Phys. Rev. Lett. 65, 3013 (1990)

    Google Scholar 

  22. R. Imbihl, G. Ertl, Oscillatory kinetics in heterogeneous catalysis. Chem. Rev. 95, 697 (1995)

    Google Scholar 

  23. Q. Ouyang, J.M. Flesselles, Transition from spirals to defect turbulence driven by a convective instability. Nature 379, 143 (1996)

    Article  ADS  Google Scholar 

  24. Q. Ouyang, H.L. Swinney, G. Li, Transition from spirals to defect-mediated turbulence driven by a Doppler instability. Phys. Rev. Lett. 84, 1047 (2000)

    Google Scholar 

  25. L.Q. Zhou, Q. Ouyang, Experimental studies on long-wavelength instability and spiral breakup in a reaction-diffusion system. Phys. Rev. Lett. 85, 1650 (2000)

    Google Scholar 

  26. G. Gerisch, Periodic signals control pattern formation in cell aggregations. Naturwissenschaften 58, 430 (1971)

    Article  ADS  Google Scholar 

  27. F. Siegert, C. Weijer, Three dimensional scroll waves organize dictyostelium slugs. Proc. Natl. Acad. Sci. USA 89, 6433 (1992)

    Google Scholar 

  28. E. Ben-Jacob, I. Cohen, H. Levine, Cooperative self-organization of microorganism. Adv. Phys. 49, 395 (2000)

    Google Scholar 

  29. J. Lechleiter, S. Girard, E. Peralta, D. Clapham, Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252, 123 (1992)

    Google Scholar 

  30. M. Falcke, Reading the patterns in living cells: the physics of Ca\(^{2+}\) signaling. Adv. Phys. 53, 255 (2004)

    Google Scholar 

  31. D.M. Raskin, P.A. De Boer, Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia Coli. Proc. Natl. Acad. Sci. USA 96, 4971 (1999)

    Google Scholar 

  32. M. Loose, E. Fischer-Friedrich, J. Ries, K. Kruse, P. Schwille, Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320, 789–792 (2008)

    Google Scholar 

  33. C. Beta, K. Kruse, Intracellular oscillations and waves. Ann. Rev. Cond. Math. Phys. 8, 239–264 (2017)

    Google Scholar 

  34. J. Halatek, F. Brauns, E. Frey, Self-organization principles of intracellular pattern formation. Phil. Trans. R. Soc. B 373, 20170107 (2018)

    Article  Google Scholar 

  35. V.K. Vanag, I.R. Epstein, Pattern formation in a tunable medium: the Belousov-Zhabotinsky reaction in an aerosol OT microemulsion. Phys. Rev. Lett. 87, 228301 (2001)

    Article  ADS  Google Scholar 

  36. S. Alonso, F. Sagués, A.S. Mikhailov, Taming winfree turbulence of scroll waves in excitable media. Science 299, 1722 (2003)

    Article  ADS  Google Scholar 

  37. A.S. Mikhailov, K. Showalter, Control of waves, patterns and turbulence in chemical systems. Phys. Rep. 425, 79–194 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  38. T. Bánsági Jr., O. Steinbock, Nucleation and collapse of scroll rings in excitable media. Phys. Rev. Lett. 97, 198301 (2006)

    Article  ADS  Google Scholar 

  39. C. Luengviriya, U. Storb, G. Lindner, S.C. Müller, M. Bär, M.J.B. Hauser, Scroll wave instabilities in an excitable chemical medium. Phys. Rev. Lett. 100, 148302 (2008)

    Google Scholar 

  40. T. Bánsági, V.K. Vanag, I.R. Epstein, Tomography of reaction-diffusion microemulsions reveals three-dimensional turing patterns. Science 331, 1309–1312 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  41. A.T. Winfree, When Time Breaks Down: The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias (Princeton University, Princeton, 1987)

    Google Scholar 

  42. S.V. Pandit, J. Jalife, Rotors and the dynamics of cardiac fibrillation. Circ. Res. 112, 849 (2013)

    Article  Google Scholar 

  43. A. Karma, Physics of cardiac arrhythmogenesis. Ann. Rev. Cond. Math. Phys. 4, 313 (2013)

    Google Scholar 

  44. Z. Qu, G. Hu, A. Garfinkel, J.N. Weiss, Nonlinear and stochastic dynamics in the heart. Phys. Rep. 543, 61 (2014)

    Google Scholar 

  45. S. Alonso, M. Bär, B. Echebarria, Nonlinear physics of electrical wave propagation in the heart: a review. Rep. Prog. Phys. 79, 096601 (2016)

    Article  ADS  Google Scholar 

  46. A.T. Winfree, Electrical turbulence in three-dimensional heart muscle. Science 266, 1003 (1994)

    Article  ADS  Google Scholar 

  47. M. Bär, L. Brusch, Breakup of spiral waves caused by radial dynamics: Eckhaus and finite wavenumber instabilities. New J. Phys. 6, 5 (2004)

    Article  ADS  Google Scholar 

  48. F.H. Fenton, E.M. Cherry, H.M. Hastings, S.J. Evans, Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos 12, 852 (2002)

    Article  ADS  Google Scholar 

  49. P. Wheeler, D. Barkley, Computation of spiral spectra. SIAM J. Appl. Dyn. Syst. 5, 15777 (2006)

    Article  MathSciNet  Google Scholar 

  50. I.S. Aranson, L. Kramer, The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74, 92 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  51. S. Alonso, M. Bär, Reentry near the percolation threshold in a heterogeneous discrete model for cardiac tissue. Phys. Rev. Lett. 110, 158101 (2013)

    Article  ADS  Google Scholar 

  52. A.S. Mikhailov, G. Ertl, Chemical Complexity - Self-Organization Processes in Molecular Systems (Springer International Publishing Company, Cham, 2017)

    Google Scholar 

  53. J. Christoph, M. Chebbok, C. Richter, J. Schröder-Schetelig, P. Bittihn, S. Stein, I. Uzelac, F.H. Fenton, G. Hasenfuß, R.F. Gilmour Jr., S. Luther, Electro-mechanical vortex filaments during cardiac fibrillation. Nature 555, 667 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Bär .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bär, M. (2019). Reaction-Diffusion Patterns and Waves: From Chemical Reactions to Cardiac Arrhythmias. In: Tsuji, K., Müller, S.C. (eds) Spirals and Vortices. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-030-05798-5_14

Download citation

Publish with us

Policies and ethics