Skip to main content

A Novel Method for Race Determination of Human Skulls

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11188))

Abstract

Race determination of skulls of individuals is a continually growing subject in forensic anthropology. Traditionally, race determination has been conducted either entirely subjectively by qualified forensic anthropologists, or has been conducted through a semi-automated fashion through multivariate discriminant functions. This paper describes a novel method for completely automated race determination of CT scans of skulls, wherein skulls are preprocessed, reduced to a low dimensional model and segregated into one of two racial classes through a classifier. The classifier itself is chosen from a survey conducted against four different classification techniques. This method can both be used as a tool for completely automated race determination, or as decision support for forensic anthropologists. A total of 341 skulls with variance in race have been gathered by the University of Nottingham Malaysia Campus and used to train and test the method. The resultant accuracy of this method is 79%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sauer, N.J.: Forensic anthropology and the concept of race: if races don’t exist, why are forensic anthropologists so good at identifying them? Soc. Sci. Med. 34(2), 107–111 (1992)

    Article  Google Scholar 

  2. Cartmill, M.: The status of the race concept in physical anthropology. Am. Anthropol. 100, 651–660 (1998)

    Article  Google Scholar 

  3. National Institute of Health: Anthropological views. Accessed 06 Apr 2017

    Google Scholar 

  4. Johnson, D.R., O’higgins, P., Moore, W.J., McAndrew, T.J.: Determination of race and sex of the human skull by discriminant function analysis of linear and angular dimensions. Forensic Sci. Int. 41(1–2), 41–53 (1989)

    Article  Google Scholar 

  5. Snow, C.C., Hartman, S., Giles, E., Young, F.A.: Sex and race determination of crania by calipers and computer: a test of the Giles and Elliot discriminant functions in 52 forensic science cases. J. Forensic Sci. 24(2), 448–460 (1979)

    Article  Google Scholar 

  6. Konigsberg, L.W., Algee-Hewitt, B.F.B., Steadman, D.W.: Estimation and evidence in forensic anthropology: sex and race. Am. J. Phys. Anthropol. 139(1), 77–90 (2009)

    Article  Google Scholar 

  7. Ousley, S., Jantz, R.: Fordisc 3. Rechtsmedizin 23(2), 97–99 (2013)

    Article  Google Scholar 

  8. Dibennardo, R., Taylor, J.V.: Multiple discriminant function analysis of sex and race in the postcranial skeleton. Am. J. Phys. Anthropol. 61(3), 305–314 (1983)

    Article  Google Scholar 

  9. Işcan, M.Y.: Forensic anthropology of sex and body size. Forensic Sci. Int. 147, 107–112 (2004)

    Article  Google Scholar 

  10. Jantz, R.L., Mahfouz, M., Shirley, N.R., Fatah, E.A.: Improving sex estimation from crania using 3-dimensional CT scans. Department of Justice (2013)

    Google Scholar 

  11. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Robotics-DL Tentative, pp. 586–606. International Society for Optics and Photonics (1992)

    Google Scholar 

  12. Rangarajan, A., Chui, H., Bookstein, F.L.: The softassign procrustes matching algorithm. In: Duncan, J., Gindi, G. (eds.) IPMI 1997. LNCS, vol. 1230, pp. 29–42. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63046-5_3

    Chapter  Google Scholar 

  13. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: 2001 Proceedings of Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152. IEEE (2001)

    Google Scholar 

  14. Vos, F.M., et al.: A statistical shape model without using landmarks. In: 2004 Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 714–717. IEEE (2004)

    Google Scholar 

  15. Brett, A.D., Taylor, C.J.: A method of automated landmark generation for automated 3D PDM construction. Image Vis. Comput. 18(9), 739–748 (2000)

    Article  Google Scholar 

  16. Jolliffe, I.: Principal Component Analysis. Wiley, Hoboken (2002)

    MATH  Google Scholar 

  17. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Article  Google Scholar 

  18. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788 (1999)

    Article  Google Scholar 

  19. Peres-Neto, P.R., Jackson, D.A., Somers, K.M.: How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput. Stat. Data Anal. 49(4), 974–997 (2005)

    Article  MathSciNet  Google Scholar 

  20. Fodor, I.K.: A survey of dimension reduction techniques. Cent. Appl. Sci. Comput. Lawrence Livermore Natl. Lab. 9, 1–18 (2002)

    Google Scholar 

  21. Heimann, T., Meinzer, H.-P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  22. Barratt, D.C., et al.: Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging. Med. Image Anal. 12(3), 358–374 (2008)

    Article  Google Scholar 

  23. Fleute, M., Lavallée, S.: Building a complete surface model from sparse data using statistical shape models: application to computer assisted knee surgery. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 879–887. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056276

    Chapter  Google Scholar 

  24. Frangi, A.F., Rueckert, D., Schnabel, J.A., Niessen, W.J.: Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans. Med. Imaging 21(9), 1151–1166 (2002)

    Article  Google Scholar 

  25. Luo, L., et al.: Automatic sex determination of skulls based on a statistical shape model. Comput. Math. Methods Med. 2013 (2013)

    Google Scholar 

  26. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  27. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  28. Liaw, A., Wiener, M.: Classification and regression by randomforest. R news 2(3), 18–22 (2002)

    Google Scholar 

  29. Kobbelt, L., Campagna, S., Seidel, H.-P.: A general framework for mesh decimation. In: Graphics Interface, vol. 98, pp. 43–50 (1998)

    Google Scholar 

  30. Sijbers, J., Postnov, A.: Reduction of ring artefacts in high resolution micro-CT reconstructions. Phys. Med. Biol. 49(14), N247 (2004)

    Article  Google Scholar 

  31. Glover, G.H., Pelc, N.J.: An algorithm for the reduction of metal clip artifacts in CT reconstructions. Med. Phys. 8(6), 799–807 (1981)

    Article  Google Scholar 

  32. Ilayperuma, I.: Evaluation of cephalic indices: a clue for racial and sex diversity. Int. J. Morphol. 29, 112–117 (2011)

    Article  Google Scholar 

  33. Hu, Y., et al.: A hierarchical dense deformable model for 3D face reconstruction from skull. Multimed. Tools Appl. 64(2), 345–364 (2013)

    Article  Google Scholar 

  34. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI, Stanford, CA, vol. 14, pp. 1137–1145 (1995)

    Google Scholar 

  35. Cranial features and race. http://johnhawks.net/explainer/laboratory/race-cranium/. Accessed 04 Apr 2017

  36. Spradley, M.K., Hefner, J.T., Anderson, B.: Ancestry assessment using random forest modeling. J. Forensic Sci. 59(3), 583–589 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Hospital Kuala Lumpur for providing all data used. The research (NMRR-15-1761-2777) has received full ethics approval from the Ministry of Health, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Yi Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oakley, C., Bai, L., Liao, I.Y., Arigbabu, O., Abdullah, N., Noor, M.H.M. (2019). A Novel Method for Race Determination of Human Skulls. In: Zhang, Z., Suter, D., Tian, Y., Branzan Albu, A., Sidère, N., Jair Escalante, H. (eds) Pattern Recognition and Information Forensics. ICPR 2018. Lecture Notes in Computer Science(), vol 11188. Springer, Cham. https://doi.org/10.1007/978-3-030-05792-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05792-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05791-6

  • Online ISBN: 978-3-030-05792-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics