Skip to main content

Effects of Gd/Y Ratio on the Microstructures and Mechanical Properties of Cast Mg–Gd–Y–Zr Alloys

  • Conference paper
  • First Online:
Magnesium Technology 2019

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 2371 Accesses

Abstract

Three Mg–xGd–yY–0.5Zr (x + y=13, wt%) alloys were prepared by sand casting to investigate the effects of Gd /Y ratio on the microstructures and mechanical properties . The results show that Gd /Y ratio had little influence on the grain size and the phase constitution of the microstructures . However, the volume fraction of the second phase Mg24(Gd , Y)5 in as-cast state increased, while that of the cubic phase (Y, Gd )H2 in as-solutionized state almost unchanged with the decrease of Gd /Y ratio . The uniaxial tension tests of the three alloys show that for both as-solutionized and as-aged states, the yield strength was slightly increased but the ductility was apparently decreased with the decrease of Gd /Y ratio from 3.33 to 1.17. It was thought that Gd and Y atoms in Mg matrix have approximate solute strengthening effect but different adverse effect on ductility , which should be responsible for the mechanical properties difference for the three alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.L. Mordike, T. Ebert, Materials Science and Engineering: A, 302 (2001) 37–45.

    Article  Google Scholar 

  2. B. Smola, I. Stulı́ková, F. von Buch, B.L. Mordike, Materials Science and Engineering: A, 324 (2002) 113–117.

    Article  Google Scholar 

  3. R.G. Li, J.F. Nie, G.J. Huang, Y.C. Xin, Q. Liu, Scripta Materialia, 64 (2011) 950–953.

    Article  CAS  Google Scholar 

  4. M. Suzuki, H. Sato, K. Maruyama, H. Oikawa, Materials Science and Engineering: A, 252 (1998) 248–255.

    Article  Google Scholar 

  5. G.W. Lorimer, P.J. Apps, H. Karimzadeh, J.F. King, Materials Science Forum, 419(2003) 279–284.

    Article  CAS  Google Scholar 

  6. S.B. Li, W.B. Du, X.D. Wang, K. Liu, Z.H. Wang, Acta Metallurgica Sinica (English Letters), 54 (2018) 911–917.

    Google Scholar 

  7. M.E. Drits, Z.A. Sviderskaya, L.L. Rokhlin, N.I. Nikitina, Metal Science and Heat Treatment, 21 (1979) 887–889.

    Article  Google Scholar 

  8. J.F. Nie, X. Gao, S.M. Zhu, Scripta Materialia, 53 (2005) 1049–1053.

    Article  CAS  Google Scholar 

  9. I.A. Anyanwu, S. Kamado, Y. Kojima, Materials Transactions, 42 (2001) 1206–1211.

    Article  CAS  Google Scholar 

  10. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, Journal of Alloys and Compounds, 427 (2007) 316–323.

    Article  CAS  Google Scholar 

  11. V. Janik, D.D. Yin, Q.D. Wang, S.M. He, C.J. Chen, Z. Chen, C.J. Boehlert, Materials Science and Engineering: A, 528 (2011) 3105–3112.

    Article  Google Scholar 

  12. H.R.J. Nodooshan, W. Liu, G. Wu, Y. Rao, C. Zhou, S. He, W. Ding, R. Mahmudi, Materials Science and Engineering: A, 615 (2014) 79–86.

    Article  CAS  Google Scholar 

  13. J. Wang, J. Meng, D. Zhang, D. Tang, Materials Science and Engineering: A, 456 (2007) 78–84.

    Article  Google Scholar 

  14. I.P.D.S.J.–F.N.M. Qian, Light Alloys: Metallurgy of the Light Metals, 2017.

    Google Scholar 

  15. J.-L. Li, N. Zhang, X.-X. Wang, D. Wu, R.-S. Chen, Acta Metallurgica Sinica (English Letters), 31 (2018) 189–198.

    Google Scholar 

  16. X. Liu, Z. Zhang, Q. Le, L. Bao, Journal of Magnesium and Alloys, 4 (2016) 214–219.

    Article  CAS  Google Scholar 

  17. Y. Huang, L. Yang, S. You, W. Gan, K.U. Kainer, N. Hort, Journal of Magnesium and Alloys, 4 (2016) 173–180.

    Article  CAS  Google Scholar 

  18. K. Chen, K. Boyle, Metallurgical and Materials Transactions A, 40(2009) 2751–2760.

    Article  Google Scholar 

  19. Gao L (2010) Composition design, solid solution strengthening and precipitation strengthening mechanisms in high strength cast Mg–Gd–Y–Zr Alloys. Ph.D. thesis, Chinese Academy of Sciences.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key Research and Development Program of China through Project No. 2016YFB0301104, the National Natural Science Foundation of China (NSFC) through Projects No. 51531002, No. 51301173, No. 51601193 and No. 51701218, the National Science and Technology Major Project of China through Project No. 2017ZX04014001, and the National Basic Research Program of China (973 Program) through Project No. 2013CB632202.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Wu or R. S. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J.L., Wu, D., Chen, R.S., Han, EH. (2019). Effects of Gd/Y Ratio on the Microstructures and Mechanical Properties of Cast Mg–Gd–Y–Zr Alloys. In: Joshi, V., Jordon, J., Orlov, D., Neelameggham, N. (eds) Magnesium Technology 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05789-3_9

Download citation

Publish with us

Policies and ethics