Skip to main content

Characterization of Staggered Twin Formation in HCP Magnesium

  • Conference paper
  • First Online:
Magnesium Technology 2019

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Twins in hexagonal close-packed polycrystals, most often nucleate at grain-boundaries (GBs), propagate into the grain and terminate at opposing GBs. Regularly, multiple parallel twins of the same variant form inside the same grain. When twins terminate inside the grains, rather than the grain boundary, they tend to form a staggered structure. Whether a staggered twin structure or the more common grain spanning twin structure forms can greatly affect mechanical behavior . In this work, the underlying mechanism for the formation of staggered twins is studied using an elasto-visco-plastic fast Fourier transform model, which quantifies the local stresses associated with \( \left\{ {10\overline{1} 2} \right\} \)-type staggered twins in magnesium for different configurations. The model results suggest that when a twin tip is close to the lateral side of another twin, the driving force for twin propagation is significantly reduced. As a result, the staggered twin structure forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.G. Partridge (1967) The crystallography and deformation modes of hexagonal close-packed metals. Metallurgical Reviews 12: 169–194.

    Article  CAS  Google Scholar 

  2. M.H. Yoo (1981) Slip, Twinning, and Fracture in Hexagonal Close-Packed Metals. Metall Trans A 12(3): 409–418.

    Article  CAS  Google Scholar 

  3. M.H. Yoo, J.K. Lee (1991) Deformation Twinning in Hcp Metals and Alloys. Philos Mag A 63(5): 987–1000.

    Google Scholar 

  4. I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, C.N. Tome (2010) Statistical analyses of deformation twinning in magnesium (vol 90, pg 2161, 2010). Philos Mag 90(30): 4073–4074.

    Article  CAS  Google Scholar 

  5. L. Capolungo, P.E. Marshall, R.J. McCabe, I.J. Beyerlein, C.N. Tome (2009) Nucleation and growth of twins in Zr: A statistical study. Acta Mater 57(20): 6047–6056.

    Article  CAS  Google Scholar 

  6. M.A. Kumar, M. Wroński, R.J. McCabe, L. Capolungo, K. Wierzbanowski, C.N. Tomé (2018) Role of microstructure on twin nucleation and growth in HCP titanium: A statistical study. Acta Mater 148: 123–132.

    Google Scholar 

  7. R.J. McCabe, G. Proust, E.K. Cerreta, A. Misra (2009) Quantitative analysis of deformation twinning in zirconium. Int J Plasticity 25(3): 454–472.

    Article  CAS  Google Scholar 

  8. B.M. Morrow, R.J. Mccabe, E.K. Cerreta, C.N. Tome (2014) In-Situ TEM Observation of Twinning and Detwinning During Cyclic Loading in Mg. Metall Mater Trans A 45a(1): 36–40.

    Article  Google Scholar 

  9. J. Wang, I.J. Beyerlein, C.N. Tome (2010) An atomic and probabilistic perspective on twin nucleation in Mg. Scripta Mater 63(7): 741–746.

    Article  CAS  Google Scholar 

  10. J. Wang, J.P. Hirth, C.N. Tome (2009) ((1)over-bar0 1 2) Twinning nucleation mechanisms in hexagonal-close-packed crystals. Acta Mater 57(18): 5521–5530.

    Google Scholar 

  11. M.A. Kumar, I.J. Beyerlein, R.J. McCabe, C.N. Tome (2016) Grain neighbour effects on twin transmission in hexagonal close-packed materials. Nat Commun 7.

    Google Scholar 

  12. M.A. Kumar, I.J. Beyerlein, C.N. Tome (2016) Effect of local stress fields on twin characteristics in HCP metals. Acta Mater 116: 143–154.

    Google Scholar 

  13. G.C. Kaschner, C.N. Tome, I.J. Beyerlein, S.C. Vogel, D.W. Brown, R.J. McCabe (2006) Role of twinning in the hardening response of zirconium during temperature reloads. Acta Mater 54(11): 2887–2896.

    Article  CAS  Google Scholar 

  14. G. Proust, C.N. Tome, G.C. Kaschner (2007) Modeling texture, twinning and hardening evolution during deformation of hexagonal materials. Acta Mater 55(6): 2137–2148.

    Article  CAS  Google Scholar 

  15. Q. Yu, J. Wang, Y.Y. Jiang, R.J. McCabe, N. Li, C.N. Tome (2014) Twin-twin interactions in magnesium. Acta Mater 77: 28–42.

    Article  CAS  Google Scholar 

  16. Q. Yu, J. Zhang, Y. Jiang (2011) Fatigue damage development in pure polycrystalline magnesium under cyclic tension–compression loading. Materials Science and Engineering: A 528(25–26): 7816–7826.

    Article  CAS  Google Scholar 

  17. N.P. Daphalapurkar, J.W. Wilkerson, T.W. Wright, K.T. Ramesh (2014) Kinetics of a fast moving twin boundary in nickel. Acta Mater 68: 82–92.

    Article  CAS  Google Scholar 

  18. E. Faran, D. Shilo (2010) Twin Motion Faster Than the Speed of Sound. Phys Rev Lett 104(15).

    Google Scholar 

  19. M.A. Kumar, A.K. Kanjarla, S.R. Niezgoda, R.A. Lebensohn, C.N. Tome (2015) Numerical study of the stress state of a deformation twin in magnesium. Acta Mater 84: 349–358.

    Google Scholar 

  20. J. Michel, H. Moulinec, P. Suquet (2000) A computational method based on augmented Lagrangians and fast Fourier Transforms for composites with high contrast. CMES-Computer Modeling in Engineering & Sciences 1(2): 79–88.

    Google Scholar 

  21. H. Moulinec, P. Suquet (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes Rendus De L Academie Des Sciences Serie Ii 318(11): 1417–1423.

    Google Scholar 

  22. R.A. Lebensohn (2001) N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform. Acta Mater 49(14): 2723–2737.

    Google Scholar 

  23. R. Brenner, R.A. Lebensohn, O. Castelnau (2009) Elastic anisotropy and yield surface estimates of polycrystals. Int J Solids Struct 46(16): 3018–3026.

    Article  Google Scholar 

  24. R.A. Lebensohn, R. Brenner, O. Castelnau, A.D. Rollett (2008) Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper. Acta Mater 56(15): 3914–3926.

    Article  CAS  Google Scholar 

  25. R.A. Lebensohn, M.I. Idiart, P.P. Castaneda, P.G. Vincent (2011) Dilatational viscoplasticity of polycrystalline solids with intergranular cavities. Philos Mag 91(22): 3038–3067.

    Article  CAS  Google Scholar 

  26. A.K. Kanjarla, R.A. Lebensohn, L. Balogh, C.N. Tome (2012) Study of internal lattice strain distributions in stainless steel using a full-field elasto-viscoplastic formulation based on fast Fourier transforms. Acta Mater 60(6–7): 3094–3106.

    Article  CAS  Google Scholar 

  27. R.A. Lebensohn, A.K. Kanjarla, P. Eisenlohr (2012) An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plasticity 32–33: 59–69.

    Article  Google Scholar 

  28. P. Eisenlohr, M. Diehl, R.A. Lebensohn, F. Roters (2013) A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int J Plasticity 46: 37–53.

    Article  Google Scholar 

  29. M.A. Kumar, I.J. Beyerlein, R.A. Lebensohn, C.N. Tome (2017) Modeling the effect of neighboring grains on twin growth in HCP polycrystals. Model Simul Mater Sc 25(6).

    Article  Google Scholar 

  30. M.A. Kumar, I.J. Beyerlein, R.A. Lebensohn, C.N. Tome (2017) Role of alloying elements on twin growth and twin transmission in magnesium alloys. Mat Sci Eng a-Struct 706: 295–303.

    Google Scholar 

  31. M.A. Kumar, I.J. Beyerlein, C.N. Tome (2016) Grain size constraints on twin expansion in hexagonal close packed crystals. J Appl Phys 120(15).

    Google Scholar 

  32. I.J. Beyerlein, R.J. McCabe, C.N. Tome (2011) Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study. J Mech Phys Solids 59(5): 988–1003.

    Article  CAS  Google Scholar 

  33. R.F.S. Hearmon (1946) The Elastic Constants of Anisotropic Materials. Rev Mod Phys 18(3): 409–440.

    Article  CAS  Google Scholar 

  34. G. Simmons, H. Wang (year) Single crystal elastic constants and calculated aggregate properties: A Handbook. MIT Press.

    Google Scholar 

  35. H. Abdolvand, A.J. Wilkinson (2016) Assessment of residual stress fields at deformation twin tips and the surrounding environments. Acta Mater 105: 219–231.

    Article  CAS  Google Scholar 

  36. L. Balogh, S.R. Niezgoda, A.K. Kanjarla, D.W. Brown, B. Clausen, W. Liu, C.N. Tome (2013) Spatially resolved in situ strain measurements from an interior twinned grain in bulk polycrystalline AZ31 alloy. Acta Mater 61(10): 3612–3620.

    Article  CAS  Google Scholar 

  37. I. Basu, H. Fidder, V. Ocelik, J.T.M. de Hosson (2018) Local Stress States and Microstructural Damage Response Associated with Deformation Twins in Hexagonal Close Packed Metals. Crystals 8(1).

    Article  Google Scholar 

  38. Q. Sun, X. Zhang, Y. Ren, L. Tan, J. Tu (2015) Observations on the intersection between 101̅2 twin variants sharing the same zone axis in deformed magnesium alloy. Mater Charact 109: 160–163.

    Google Scholar 

  39. Q. Sun, X.Y. Zhang, J. Tu, Y. Ren, H. Qin, Q. Liu (2015) Characterization of basal-prismatic interface of \( \left\{ {10\overline{1} 2} \right\} \) twin in deformed titanium by high-resolution transmission electron microscopy. Phil Mag Lett 95(3): 145–151.

    Google Scholar 

  40. F. Wang, K. Hazeli, K.D. Molodov, C.D. Barrett, T. Al-Samman, D.A. Molodov, A. Kontsos, K.T. Ramesh, H. El Kadiri, S.R. Agnew (2018) Characteristic dislocation substructure in \( \left\{ {10\overline{1} 2} \right\} \) twins in hexagonal metals. Scripta Mater 143: 81–85.

    Google Scholar 

  41. Y. Liu, N. Li, M.A. Kumar, S. Pathak, J. Wang, R.J. McCabe, N.A. Mara, C.N. Tome (2017) Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars. Acta Mater 135: 411–421.

    Article  CAS  Google Scholar 

  42. J. Jeong, M. Alfreider, R. Konetschnik, D. Kiener, S. Oh (2018) In-situ TEM observation of {1012} twin-dominated deformation of Mg pillars: Twinning mechanism, size effects and rate dependency. Acta Mater 158: 407–421.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is fully funded by the US Department of Energy, Office of Basic Energy Sciences Project FWP 06SCPE401. I.J.B. acknowledges financial support from the National Science Foundation (NSF CMMI-1729887). BL acknowledges financial support from the National Defense Science and Engineering Graduate (NDSEG) Fellowship. The authors thank Luoning Ma (Johns Hopkins University) for the preparation of TEM specimen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arul Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arul Kumar, M., Leu, B., Rottmann, P., Beyerlein, I.J. (2019). Characterization of Staggered Twin Formation in HCP Magnesium. In: Joshi, V., Jordon, J., Orlov, D., Neelameggham, N. (eds) Magnesium Technology 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05789-3_31

Download citation

Publish with us

Policies and ethics