Skip to main content

Sacrificial Cathodic Protection of Mg Alloy AZ31B by an Mg–5Sn Surface Alloy

  • Conference paper
  • First Online:
Magnesium Technology 2019

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 2326 Accesses

Abstract

A solid solution Mg–5Sn alloy is evaluated as a sacrificial anode for the cathodic protection of AZ31B . Uncoupled Mg–5Sn is shown to have superior barrier properties and reduced cathodic kinetics relative to AZ31B . The performance as a sacrificial anode was studied in situ with global and local measurements of galvanic coupling between the Mg–5Sn alloy and AZ31B when immersed in 0.6-M aqueous NaCl solution. The scanning vibrating electrode technique (SVET ) was utilized to map the local current density distributions across the interface of the galvanic couple. Undesirable polarity reversal was observed during the initial 10 h of immersion, after which protection was offered. A self-corrosion rate of 52% was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.B. Abbott, Magnesium: Industrial and Research Developments Over the Last 15 Years, CORROSION. 71 (2015) 120–127. https://doi.org/10.5006/1474.

    Article  CAS  Google Scholar 

  2. M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, P. Beggs, Magnesium alloy applications in automotive structures, JOM. 60 (2008) 57–62. https://doi.org/10.1007/s11837-008-0150-8.

    Article  CAS  Google Scholar 

  3. G. Williams, H. Ap Llwyd Dafydd, R. Subramanian, H.N. McMurray, The Influence of Chloride Ion Concentration on Passivity Breakdown in Magnesium, CORROSION. 73 (2017) 471–481. https://doi.org/10.5006/2328.

    Article  CAS  Google Scholar 

  4. M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson, Fundamentals and advances in magnesium alloy corrosion, Progress in Materials Science. 89 (2017) 92–193. https://doi.org/10.1016/j.pmatsci.2017.04.011.

    Article  CAS  Google Scholar 

  5. N. Birbilis, A.D. King, S. Thomas, G.S. Frankel, J.R. Scully, Evidence for enhanced catalytic activity of magnesium arising from anodic dissolution, Electrochimica Acta. 132 (2014) 277–283. https://doi.org/10.1016/j.electacta.2014.03.133.

    Article  CAS  Google Scholar 

  6. A.D. King, N. Birbilis, J.R. Scully, Accurate Electrochemical Measurement of Magnesium Corrosion Rates; a Combined Impedance, Mass-Loss and Hydrogen Collection Study, Electrochimica Acta. 121 (2014) 394–406. https://doi.org/10.1016/j.electacta.2013.12.124.

    Article  CAS  Google Scholar 

  7. L.G. Bland, A.D. King, N. Birbilis, J.R. Scully, Assessing the Corrosion of Commercially Pure Magnesium and Commercial AZ31B by Electrochemical Impedance, Mass-Loss, Hydrogen Collection, and Inductively Coupled Plasma Optical Emission Spectrometry Solution Analysis, CORROSION. 71 (2015) 128–145. https://doi.org/10.5006/1419.

    Article  CAS  Google Scholar 

  8. D.A. Jones, Principles and prevention of corrosion, 2nd ed, Prentice Hall, Upper Saddle River, NJ, 1996.

    Google Scholar 

  9. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, n.d.

    Google Scholar 

  10. J. Kubásek, D. Vojtěch, J. Lipov, T. Ruml, Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg–X (X = Sn, Ga, In) alloys, Materials Science and Engineering: C. 33 (2013) 2421–2432. https://doi.org/10.1016/j.msec.2013.02.005.

    Article  Google Scholar 

  11. R.L. Liu, J.R. Scully, G. Williams, N. Birbilis, Reducing the corrosion rate of magnesium via microalloying additions of group 14 and 15 elements, Electrochimica Acta. 260 (2018) 184–195. https://doi.org/10.1016/j.electacta.2017.11.062.

    Article  CAS  Google Scholar 

  12. N. Birbilis, G. Williams, K. Gusieva, A. Samaniego, M.A. Gibson, H.N. McMurray, Poisoning the corrosion of magnesium, Electrochemistry Communications. 34 (2013) 295–298. https://doi.org/10.1016/j.elecom.2013.07.021.

    Article  CAS  Google Scholar 

  13. G. Williams, K. Gusieva, N. Birbilis, Localized corrosion of binary Mg-Nd alloys in chloride-containing electrolyte using a scanning vibrating electrode technique, Corrosion. 68 (2012) 489–498.

    Article  CAS  Google Scholar 

  14. W. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, M. Ferry, A high-specific-strength and corrosion-resistant magnesium alloy, Nature Materials. 14 (2015) 1229–1235. https://doi.org/10.1038/nmat4435.

    Article  CAS  Google Scholar 

  15. K. Gusieva, C.H.J. Davies, J.R. Scully, N. Birbilis, Corrosion of magnesium alloys: the role of alloying, International Materials Reviews. 60 (2015) 169–194. https://doi.org/10.1179/1743280414y.0000000046.

    Article  Google Scholar 

  16. T.W. Cain, M.A. Melia, J.M. Fitz-Gerald, J.R. Scully, Evaluation of the Potential Range for Sacrificial Mg Anodes for the Cathodic Protection of Mg Alloy AZ31B-H24, CORROSION. 73 (2017) 544–562. https://doi.org/10.5006/2356.

    Article  CAS  Google Scholar 

  17. R.L. Liu, S. Thomas, J.R. Scully, G. Williams, N. Birbilis, An Experimental Survey of the Cathodic Activation of Metals Including Mg, Sc, Gd, La, Al, Sn, Pb, and Ge in Dilute Chloride Solutions of Varying pH, CORROSION. 73 (2017) 494–505. https://doi.org/10.5006/2282.

    Article  CAS  Google Scholar 

  18. J. Yang, C.D. Yim, B.S. You, Effects of Sn in α-Mg matrix on properties of surface films of Mg-xSn (x = 0, 2, 5 wt%) alloys: Effects of Sn on properties of surface films of Mg-Sn alloys, Materials and Corrosion. 67 (2016) 531–541. https://doi.org/10.1002/maco.201508585.

    Article  Google Scholar 

  19. H.-Y. Ha, J.-Y. Kang, J. Yang, C.D. Yim, B.S. You, Role of Sn in corrosion and passive behavior of extruded Mg-5 wt%Sn alloy, Corrosion Science. 102 (2016) 355–362. https://doi.org/10.1016/j.corsci.2015.10.028.

    Article  CAS  Google Scholar 

  20. S. Moon, Y. Nam, Anodic oxidation of Mg–Sn alloys in alkaline solutions, Corrosion Science. 65 (2012) 494–501. https://doi.org/10.1016/j.corsci.2012.08.050.

    Article  CAS  Google Scholar 

  21. J. Wang, Y. Li, S. Huang, X. Zhou, Study of the corrosion behavior and the corrosion films formed on the surfaces of Mg–xSn alloys in 3.5wt.% NaCl solution, Applied Surface Science. 317 (2014) 1143–1150. https://doi.org/10.1016/j.apsusc.2014.09.040.

    Article  CAS  Google Scholar 

  22. Eaves Mg Arsenic.pdf, (n.d.).

    Google Scholar 

  23. G. Williams, H.A.-L. Dafydd, H.N. McMurray, N. Birbilis, The influence of arsenic alloying on the localised corrosion behaviour of magnesium, Electrochimica Acta. 219 (2016) 401–411.

    Article  CAS  Google Scholar 

  24. S. Trasatti, Work function, electronegativity, and electrochemical behaviour of metals III. Electrolytic hydrogen evolution in acid solutions, Journal of Electroanalytical Chemistry. 39 (1972) 163–184. https://doi.org/10.1016/0368-1874(72)85118-9.

    Article  CAS  Google Scholar 

  25. J. Yang, C.D. Yim, B.S. You, Characteristics of Surface Films Formed on Mg–Sn Alloys in NaCl Solution, Journal of The Electrochemical Society. 163 (2016) C395–C401. https://doi.org/10.1149/2.0161608jes.

    Article  CAS  Google Scholar 

  26. K.R. Limmer, K.S. Williams, J.P. Labukas, J.W. Andzelm, First Principles Modeling of Cathodic Reaction Thermodynamics in Dilute Magnesium Alloys, CORROSION. 73 (2017) 506–517. https://doi.org/10.5006/2274.

    Article  CAS  Google Scholar 

  27. R.L. Liu, M.F. Hurley, A. Kvryan, G. Williams, J.R. Scully, N. Birbilis, Controlling the corrosion and cathodic activation of magnesium via microalloying additions of Ge, Scientific Reports. 6 (2016). https://doi.org/10.1038/srep28747.

  28. F.W. Richey, B.D. McCloskey, A.C. Luntz, Mg Anode Corrosion in Aqueous Electrolytes and Implications for Mg-Air Batteries, Journal of The Electrochemical Society. 163 (2016) A958–A963. https://doi.org/10.1149/2.0781606jes.

    Article  CAS  Google Scholar 

  29. Z.P. Cano, J.R. Kish, J.R. McDermid, On the Evolution of Cathodic Activity during Corrosion of Magnesium Alloy AZ31B in a Dilute NaCl Solution, Journal of The Electrochemical Society. 163 (2016) C62–C68. https://doi.org/10.1149/2.0151603jes.

    Article  Google Scholar 

  30. G. Williams, R. Grace, R.M. Woods, Inhibition of the Localized Corrosion of Mg Alloy AZ31 in Chloride Containing Electrolyte, CORROSION. 71 (2015) 184–198. https://doi.org/10.5006/1376.

    Article  CAS  Google Scholar 

  31. S. Fajardo, C.F. Glover, G. Williams, G.S. Frankel, The Source of Anodic Hydrogen Evolution on Ultra High Purity Magnesium, Electrochimica Acta. 212 (2016) 510–521. https://doi.org/10.1016/j.electacta.2016.07.018.

    Article  CAS  Google Scholar 

  32. G. Williams, N. Birbilis, H.N. McMurray, Controlling factors in localised corrosion morphologies observed for magnesium immersed in chloride containing electrolyte, Faraday Discussions. 180 (2015) 313–330. https://doi.org/10.1039/c4fd00268g.

    Article  CAS  Google Scholar 

  33. H.S. Isaacs, The measurement of the galvanic corrosion of soldered copper using the scanning vibrating electrode technique, Corrosion Science. 28 (1988) 547–558.

    Article  CAS  Google Scholar 

  34. A.M. Simões, A.C. Bastos, M.G. Ferreira, Y. González-García, S. González, R.M. Souto, Use of SVET and SECM to study the galvanic corrosion of an iron–zinc cell, Corrosion Science. 49 (2007) 726–739. https://doi.org/10.1016/j.corsci.2006.04.021.

    Article  Google Scholar 

  35. J.R. Kish, N. Birbilis, E.M. McNally, C.F. Glover, X. Zhang, J.R. McDermid, G. Williams, Corrosion Performance of Friction Stir Linear Lap Welded AM60B Joints, JOM. (2017). https://doi.org/10.1007/s11837-017-2504-6.

    Article  CAS  Google Scholar 

  36. B. Kannan, C.F. Glover, H.N. McMurray, G. Williams, J.R. Scully, Performance of a Magnesium-Rich Primer on Pretreated AA2024-T351 in Full Immersion: a Galvanic Throwing Power Investigation Using a Scanning Vibrating Electrode Technique, Journal of The Electrochemical Society. 165 (2018) C27–C41. https://doi.org/10.1149/2.0711802jes.

    Article  CAS  Google Scholar 

  37. G. Williams, H. Neil McMurray, Localized Corrosion of Magnesium in Chloride-Containing Electrolyte Studied by a Scanning Vibrating Electrode Technique, Journal of The Electrochemical Society. 155 (2008) C340. https://doi.org/10.1149/1.2918900.

    Article  CAS  Google Scholar 

  38. R. Akid, M. Garma, Scanning vibrating reference electrode technique: a calibration study to evaluate the optimum operating parameters for maximum signal detection of point source activity, Electrochimica Acta. 49 (2004) 2871–2879. https://doi.org/10.1016/j.electacta.2004.01.069.

    Article  CAS  Google Scholar 

  39. S. Böhm, H.. McMurray, S. Powell, D. Worsley, Photoelectrochemical investigation of corrosion using scanning electrochemical techniques, Electrochimica Acta. 45 (2000) 2165–2174. https://doi.org/10.1016/s0013-4686(99)00442-9.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the US Air Force Academy under agreement number FA7000-12-2-0017 as part of Corrosion University Pilot Program under the direction of Mr. Daniel Dunmire and by the National Science Foundation under NSF DMR#1309999 as well as the Army Research Office under agreement number W911NF-14-2-0005. The US Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation thereon. The views and conclusions contained are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement of the US Air Force Academy or the US Government. We also wish to thank Gregory Vavoso and Tony Nguyen for developing data processing software to assist with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. Glover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glover, C.F., Cain, T.W., Scully, J.R. (2019). Sacrificial Cathodic Protection of Mg Alloy AZ31B by an Mg–5Sn Surface Alloy. In: Joshi, V., Jordon, J., Orlov, D., Neelameggham, N. (eds) Magnesium Technology 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05789-3_27

Download citation

Publish with us

Policies and ethics