Skip to main content

The Influence of Temperature and Medium on Corrosion Response of ZE41 and EZ33

  • Conference paper
  • First Online:

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Mg-based implants offer a promising alternative to commonly used permanent implants due to their biodegradability that eliminates the need for a follow-up surgery, along with the associated medical and economic risks. Several of the commercial Mg alloys for various applications including potential implant applications contain rare earth elements that are known to improve mechanical strength and corrosion resistance. However, it remains a significant challenge to better understand in vitro corrosion behavior of Mg–RE alloys and predict in vivo behavior, which is useful for biomedical applications , since in vitro corrosion rates tend to be significantly higher than those reported in vivo. In this work, we study the mechanical and corrosion behavior of two Mg–RE alloys, ZE41 and EZ33, at physiologically relevant temperature of 37 °C in 3.5 wt% NaCl and Hank’s solution. Tensile and compression tests were used to evaluate mechanical properties while electrochemical techniques were used to investigate the corrosion response. Both alloys demonstrated improved corrosion resistance in Hank’s solution which was attributed to the formation of a more protective surface film. In addition, the increased RE concentration positively impacted the corrosion behavior of EZ33 compared to ZE41 in both mediums.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Song G, Atrens A. (2003) Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance. Adv Eng Mater 5:837–858. https://doi.org/10.1002/adem.200310405

    Article  CAS  Google Scholar 

  2. Song GL, Atrens A (1999) Corrosion Mechanisms of Magnesium Alloys. Adv Eng Mater 1:11–33. https://doi.org/10.1002/(sici)1527-2648(199909)1:1%3c11::aid-adem11%3e3.0.co;2-n

    Article  CAS  Google Scholar 

  3. Song G (2005) Recent progress in corrosion and protection of magnesium alloys. Adv Eng Mater 7:563–586. https://doi.org/10.1002/adem.200500013

    Article  CAS  Google Scholar 

  4. Atrens A, Song GL, Cao F, et al (2013) Advances in Mg corrosion and research suggestions. J Magnes Alloy 1:177–200. https://doi.org/10.1016/j.jma.2013.09.003

    Article  CAS  Google Scholar 

  5. King AD, Birbilis N, Scully JR (2014) Accurate electrochemical measurement of magnesium corrosion rates: A combined impedance, mass-loss and hydrogen collection study. Electrochim Acta 121:394–406. https://doi.org/10.1016/j.electacta.2013.12.124

    Article  CAS  Google Scholar 

  6. Gusieva K, Davies CHJ, Scully JR, Birbilis N (2015) Corrosion of magnesium alloys: the role of alloying. Int Mater Rev 60:169–194. https://doi.org/10.1179/1743280414y.0000000046

    Article  Google Scholar 

  7. Esmaily M, Svensson JE, Fajardo S, et al (2017) Fundamentals and advances in magnesium alloy corrosion. Prog Mater Sci 89:92–193. https://doi.org/10.1016/j.pmatsci.2017.04.011

    Article  CAS  Google Scholar 

  8. Zhao D, Witte F, Lu F, et al (2017) Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials 112:287–302. https://doi.org/10.1016/j.biomaterials.2016.10.017

    Article  CAS  Google Scholar 

  9. Chen Y, Xu Z, Smith C, Sankar J (2014) Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 10:4561–4573. https://doi.org/10.1016/j.actbio.2014.07.005

    Article  CAS  Google Scholar 

  10. Agarwal S, Curtin J, Duffy B, Jaiswal S (2016) Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Mater Sci Eng C 68:948–963. https://doi.org/10.1016/j.msec.2016.06.020

    Article  CAS  Google Scholar 

  11. Ding Y, Wen C, Hodgson P, Li Y (2014) Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. J Mater Chem B 2:1912–1933. https://doi.org/10.1039/c3tb21746a

    Article  CAS  Google Scholar 

  12. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. 2nd Eng. ed. by Marcel Pourbaix; translated from the French by James A. Franklin (except sections I, III 5, and III 6, which were originally written in English). Houston, Tex.: National Association of Corrosion Engineers, 1974

    Google Scholar 

  13. Sanchez AHM, Luthringer BJC, Feyerabend F, Willumeit R (2015) Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater 13:16–31. https://doi.org/10.1016/j.actbio.2014.11.048

    Article  CAS  Google Scholar 

  14. Tekumalla S, Seetharaman S, Almajid A, et al (2015) Mechanical Properties of Magnesium-Rare Earth Alloy Systems: A Review. Metals (Basel) 5:1–39. https://doi.org/10.3390/met5010001

    Article  Google Scholar 

  15. Sediako D, Bichler L, van Hanegam M, Shook S (2013) Compressive Creep Properties of Wrought High Temperature Magnesium Alloys in Axial and Transverse Orientation—A Neutron Diffraction Study. Magnes Technol 2013 3–8. https://doi.org/10.1002/9781118663004

    Google Scholar 

  16. AbdelGawad M, Mansoor B, Chaudhry AU (2018) Corrosion Characteristics of Two Rare Earth Containing Magnesium Alloys BT—Magnesium Technology 2018. In: Orlov D, Joshi V, Solanki KN, Neelameggham NR (eds). Springer International Publishing, Cham, pp 43–53

    Google Scholar 

  17. Zainal Abidin NI, Martin D, Atrens A (2011) Corrosion of high purity Mg, AZ91, ZE41 and Mg2Zn0.2Mn in Hank’s solution at room temperature. Corros Sci 53:862–872. https://doi.org/10.1016/j.corsci.2010.10.008

    Article  Google Scholar 

  18. Zainal Abidin NI, Atrens AD, Martin D, Atrens A (2011) Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37 °C. Corros Sci 53:3542–3556. https://doi.org/10.1016/j.corsci.2011.06.030

    Article  Google Scholar 

  19. Taltavull C, Shi Z, Torres B, et al (2014) Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank’s solution. J Mater Sci Mater Med 25:329–345. https://doi.org/10.1007/s10856-013-5087-y

    Google Scholar 

  20. Johnston S, Shi Z, Atrens A (2015) The influence of pH on the corrosion rate of high-purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks’ solution. Corros Sci 101:182–192. https://doi.org/10.1016/j.corsci.2015.09.018

    Article  CAS  Google Scholar 

  21. Zhao MC, Liu M, Song GL, Atrens A (2008) Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41. Corros Sci 50:3168–3178. https://doi.org/10.1016/j.corsci.2008.08.023

    Article  CAS  Google Scholar 

  22. Zhao MC, Liu M, Song GL, Atrens A (2008) Influence of microstructure on corrosion of As-cast ZE41. Adv Eng Mater 10:104–111. https://doi.org/10.1002/adem.200700246

    Article  CAS  Google Scholar 

  23. Siebert-Timmer A, Fletcher M, Bichler L, Sediako D (2013) Creep performance of wrought AX30 and EZ33 magnesium alloys. Can Metall Q 52:430–438. https://doi.org/10.1179/1879139513y.0000000069

    Article  CAS  Google Scholar 

  24. Wei LY, Dunlop GL, Westengen H (1997) Solidification behaviour and phase constituents of cast Mg-Zn-misch metal alloys. J Mater Sci 32:3335–3340. https://doi.org/10.1023/a:1018695927717

    Article  CAS  Google Scholar 

  25. Neil WC, Forsyth M, Howlett PC, et al (2011) Corrosion of heat treated magnesium alloy ZE41. Corros Sci 53:3299–3308. https://doi.org/10.1016/j.corsci.2011.06.005

    Article  CAS  Google Scholar 

  26. Neil WC, Forsyth M, Howlett PC, et al (2009) Corrosion of magnesium alloy ZE41—The role of microstructural features. Corros Sci 51:387–394. https://doi.org/10.1016/j.corsci.2008.11.005

    Article  CAS  Google Scholar 

  27. Trojanová Z, Lukáč P (2005) Compressive deformation behaviour of magnesium alloys. J Mater Process Technol 162–163:416–421. https://doi.org/10.1016/j.jmatprotec.2005.02.024

    Article  Google Scholar 

  28. Kirkland NT, Birbilis N, Staiger MP (2012) Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater 8:925–936. https://doi.org/10.1016/j.actbio.2011.11.014

    Article  CAS  Google Scholar 

  29. Wang J, Jang Y, Wan G, et al (2016) Flow-induced corrosion of absorbable magnesium alloy: in-situ and real-time electrochemical study. Corros Sci 104:277–289. https://doi.org/10.1016/j.corsci.2015.12.020

    Article  CAS  Google Scholar 

  30. Zakiyuddin A, Lee K (2015) Effect of a small addition of zinc and manganese to Mg-Ca based alloys on degradation behavior in physiological media. J Alloys Compd 629:274–283. https://doi.org/10.1016/j.jallcom.2014.12.181

    Article  CAS  Google Scholar 

  31. Birbilis N, Easton MA, Sudholz AD, et al (2009) On the corrosion of binary magnesium-rare earth alloys. Corros Sci 51:683–689. https://doi.org/10.1016/j.corsci.2008.12.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was performed with support from the Qatar Foundation under the National Priorities Research Program grant# NPRP 8-856-2-364. The authors acknowledge this financial support with gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mansoor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

AbdelGawad, M., Chaudhry, A.U., Mansoor, B. (2019). The Influence of Temperature and Medium on Corrosion Response of ZE41 and EZ33. In: Joshi, V., Jordon, J., Orlov, D., Neelameggham, N. (eds) Magnesium Technology 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05789-3_24

Download citation

Publish with us

Policies and ethics