Skip to main content

Influence of Thermomechanical Treatment on Tension–Compression Yield Asymmetry of Extruded Mg–Zn–Ca Alloy

  • Conference paper
  • First Online:

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Thermomechanical treatment consisting of pre-compression and isothermal aging at 150 °C for 16 h was applied to the extruded Mg–Zn–Ca (ZX10) alloy in order to reduce tension–compression yield asymmetry and improve mechanical properties via strengthening mechanism. With respect to the initial texture of the alloy, pre-compression leads to a formation of extension twins. A solute segregation and precipitation along twin boundaries is realized during a subsequent isothermal aging. After thermomechanical treatment, a solute solution and precipitation hardening contribute to the strengthening of the alloy. Active deformation mechanisms were monitored during compression or tension using the acoustic emission technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bettles, C.J.; Gibson, M.A. Current wrought magnesium alloys: Strengths and weaknesses. JOM 2005, 57, 46–49. https://doi.org/10.1007/s11837-005-0095-0

    Article  CAS  Google Scholar 

  2. Dobron, P.; Drozdenko, D.; Olejnak, J.; Hegedus, M.; Horvath, K.; Vesely, J.; Bohlen, J.; Letzig, D. Compressive yield stress improvement using thermomechanical treatment of extruded mg-zn-ca alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2018, 730, 401–409. https://doi.org/10.1016/j.msea.2018.06.026

    Article  Google Scholar 

  3. Drozdenko, D.; Bohlen, J.; Yi, S.; Minarik, P.; Chmelik, F.; Dobron, P. Investigating a twinning-detwinning process in wrought mg alloys by the acoustic emission technique. Acta Materialia 2016, 110, 103–113. https://doi.org/10.1016/j.actamat.2016.03.013

    Article  CAS  Google Scholar 

  4. Bohlen, J.; Dobron, P.; Nascimento, L.; Parfenenko, K.; Chmelik, F.; Letzig, D. The effect of reversed loading conditions on the mechanical behaviour of extruded magnesium alloy az31. Acta Physica Polonica A 2012, 122, 444–449.

    Article  CAS  Google Scholar 

  5. Drozdenko, D.; Bohlen, J.; Chmelik, F.; Lukac, P.; Dobron, P. Acoustic emission study on the activity of slip and twin mechanisms during compression testing of magnesium single crystals. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2016, 650, 20–27. https://doi.org/10.1016/j.msea.2015.https://doi.org/10.033

    Google Scholar 

  6. Dobroň, P.; Balík, J.; Chmelík, F.; Illková, K.; Bohlen, J.; Letzig, D.; Lukáč, P. A study of mechanical anisotropy of mg-zn-rare earth alloy sheet. Journal of Alloys and Compounds 2014, 588, 628–632. https://doi.org/10.1016/j.jallcom.2013.11.142

    Article  Google Scholar 

  7. Mathis, K.; Capek, J.; Clausen, B.; Krajnak, T.; Nagarajan, D. Investigation of the dependence of deformation mechanisms on solute content in polycrystalline mg-al magnesium alloys by neutron diffraction and acoustic emission. Journal of Alloys and Compounds 2015, 642, 185–191. https://doi.org/10.1016/j.jallcom.2015.03.258

    Article  Google Scholar 

  8. Horvath, K.; Drozdenko, D.; Mathis, K.; Bohlen, J.; Dobron, P. Deformation behavior and acoustic emission response on uniaxial compression of extruded rectangular profile of mg-zn-zr alloy. Journal of Alloys and Compounds 2016, 680, 623–632. https://doi.org/10.1016/j.jallcom.2016.03.310

    Article  Google Scholar 

  9. Vinogradov, A.; Vasilev, E.; Linderov, M.; Merson, D. In situ observations of the kinetics of twinning–detwinning and dislocation slip in magnesium. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2016, 676, 351–360. http://dx.doi.org/10.1016/j.msea.2016.09.004

    Article  CAS  Google Scholar 

  10. Oh, J.C.; Ohkubo, T.; Mukai, T.; Hono, K. Tem and 3dap characterization of an age-hardened mg–ca–zn alloy. Scripta Materialia 2005, 53, 675–679. https://doi.org/10.1016/j.scriptamat.2005.05.030

    Article  CAS  Google Scholar 

  11. Oh-ishi, K.; Watanabe, R.; Mendis, C.L.; Hono, K. Age-hardening response of mg–0.3at.%ca alloys with different zn contents. Materials Science and Engineering: A 2009, 526, 177–184. https://doi.org/10.1016/j.msea.2009.07.027

    Article  Google Scholar 

  12. Gao, X.; Zhu, S.M.; Muddle, B.C.; Nie, J.F. Precipitation-hardened mg–ca–zn alloys with superior creep resistance. Scripta Materialia 2005, 53, 1321–1326. https://doi.org/10.1016/j.scriptamat.2005.08.035

    Article  CAS  Google Scholar 

  13. Standard test method for dynamic young’s modulus, shear modulus, and poisson’s ratio for advanced ceramics by impulse excitation of vibration. Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio for Advanced Ceramics by Impulse Excitation of Vibration 1994.

    Google Scholar 

  14. Heiple, C.R.; Carpenter, S.H. Acoustic emission produced by deformation of metals and alloys-a review: Part II. J. Acoust. Emission 1987, 6, 215–237.

    Google Scholar 

  15. Toronchuk, J.P. Acoustic emission during twinning of zinc single crystals. Materials Evaluation 1977, 35, 51–53.

    Google Scholar 

  16. Vinogradov, A.; Vasilev, E.; Seleznev, M.; Máthis, K.; Orlov, D.; Merson, D. On the limits of acoustic emission detectability for twinning. Materials Letters 2016, 183, 417–419. https://doi.org/10.1016/j.matlet.2016.07.063

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received support from the Czech Science Foundation under grant No. 17-21855S; the Grant Agency of the Charles University under grant Nr. 1262217; the Operational Programme Research, Development and Education, The Ministry of Education, Youth and Sports (OP RDE, MEYS) under the Grant CZ.02.1.01/0.0/0.0/16_013/0001794.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dobroň .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dobroň, P., Hegedüs, M., Olejňák, J., Drozdenko, D., Horváth, K., Bohlen, J. (2019). Influence of Thermomechanical Treatment on Tension–Compression Yield Asymmetry of Extruded Mg–Zn–Ca Alloy. In: Joshi, V., Jordon, J., Orlov, D., Neelameggham, N. (eds) Magnesium Technology 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05789-3_13

Download citation

Publish with us

Policies and ethics