Skip to main content

Radiation Crosslinking for the Cable, Rubber and Healthcare Products Industry

  • Chapter
  • First Online:
Radiation Effects in Polymeric Materials

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Review on application of radiation for processing of polymers is presented. The radiation sources like gamma irradiators, electron accelerators and accelerator-based e/X systems are shortly discussed. Then, the basic information regarding physical and chemical processes undergoing in the irradiated polymers is presented. Finally, the application of radiation technology in cable, rubber and healthcare industry is reviewed; the well-established technologies exist nowadays and are being applied more widely all over the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PE:

Polyethylene

PP:

Polypropylene

PS:

Polystyrene

PET:

Polyethylene terephthalate

PFA:

Perfluoroalkoxy alkanes

POM:

Polyoxymethylene

PVC:

Polyvinylchloride

PMMA:

Polymethylmethacrylate

PBT:

Polybutylene terephthalate

ABS:

Acrylonitrile butadiene styrene

PA:

Polyamides

PPA:

Polyphthalamide

PSU:

Polysulfone

PPSU:

Polyphenylsulfone

PEI:

Polyethylenimine

PES:

Polyethersulfone

PPS:

Polyphenylene sulfide

SAN:

Styrene acrylonitrile

PI:

Polyimides

PAI:

Polyamide-imides

PEK:

Polyether ketone

PEEK:

Polyether ether ketone

LCP:

Liquid crystal polymer

COC:

Cyclic olefin copolymer

PC:

Polycarbonate

PPO:

Poly(phenylene oxide)

TPE:

Thermoplastic elastomers

LD:

Low density

MD:

Medium density

HI:

High impact

HDT:

Heat distortion temperature

References

  1. Chmielewski AG, Haji-Saeid M, Shamshad A (2005) Progress in radiation processing of polymers. Nucl Instrum Meth B 236:44–56

    Article  CAS  Google Scholar 

  2. Chmielewski AG, Al-Sheikhly M, Berejka AJ, Cleland MR, Antoniak M (2014) Rad Phys Chem 94:147–150

    Article  CAS  Google Scholar 

  3. Dole M (1950) Report of symposium IX “chemistry and physics of radiation dosimetry”. Army Chemical Center, Maryland, p 120

    Google Scholar 

  4. Charlesby A (1952) In: Proceedings of the royal society, A215, London, p 187

    Google Scholar 

  5. Charlesby A (1960) Atomic radiation and polymers. Pergamon Press, London

    Google Scholar 

  6. Haji-Saeid M, Sampa MH, Ramamoorthy N, Guven O, Chmielewski AG (2007) The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers. Nucl Instr Met Phys Res B 265:51–57

    Article  CAS  Google Scholar 

  7. IAEA (2006) Gamma irradiators for radiation processing. IAEA, Vienna, Austria. https://www-naweb.iaea.org/napc/iachem/Brochgammairradd.pdf

  8. Chmielewski AG, Berejka AJ (2008) Radiation sterilization centers worldwide. In: Trends in radiation sterilization of health care products. IAEA, Vienna, Austria, pp 49–61. http://www-pub.iaea.org/MTCD/publications/PDF/Pub1313_web.pdf

  9. Berejka AJ, Kałuska IM (2008) Materials used in medical devices. In: Trends in radiation sterilization of health care products. IAEA, Vienna, Austria, pp 159–174. http://www-pub.iaea.org/MTCD/publications/PDF/Pub1313_web.pdf

  10. Zimek Z, Chmielewski AG (1993) Present tendencies in construction of industrial electron accelerators applied in radiation processing. Nukleonika 38(2):3–21

    CAS  Google Scholar 

  11. Chmielewski AG, Sadat T, Zimek Z. Electron accelerators for radiation sterilization. In: Trends in radiation sterilization of health care products. IAEA, Vienna, Austria, pp. 27–45. http://www-pub.iaea.org/MTCD/publications/PDF/Pub1313_web.pdf

  12. Nablo SV (1993) Electron-beam processing machinery. Radiation curing in polymer science and technology, vol 1. Fundamentals and methods. Elsevier Applied Science, London, pp 504–551

    Google Scholar 

  13. Migdal W, Malec-Czechowska K, Owczarczyk B (1996) Study on application of e/X conversion for radiation processing. Nukleonika 41(3):57–66

    Google Scholar 

  14. Sun Y, Chmielewski AG (eds) (2017) Applications of ionizing radiation in materials processing. INCT, Warsaw, ISBN 978-83-933935-8-9. http://www.ichtj.waw.pl/ichtj/publ/monogr/m2017_1.htm

  15. Przybytniak G, Nowicki A, Mirkowski K (2008) Evaluation of polymers designed for radiation processing. Nukleonika 53(S2):S67–S72

    CAS  Google Scholar 

  16. Mehnert R (1995) Materials modification using electron beams. In: Misaelides P (ed) Application of panicle and laser beams in materials technology. Kluwer Academic Publishers, USA, pp 557–580

    Chapter  Google Scholar 

  17. Zimek Z, Przybytniak G, Nowicki A (2012) Optimization of electron beam crosslinking of wire and cable insulation. Rad Phys Chem 81(9):1398–1403

    Article  CAS  Google Scholar 

  18. Rosato DV (1998) Extruding plastics. Chapter 12, Wire and cable. Chapman & Hall, UK, pp 470–493

    Chapter  Google Scholar 

  19. Przybytniak G (2017) Crosslinking of polymers in radiation processing, in pos. 14. pp 249–267

    Google Scholar 

  20. Przybytniak G, Zimek Z (2015) Application of electron accelerators in cable industry. In: Chmielewska-Smietanko D (ed) The industrial and environmental applications of electron beams. INCT, Warsaw, ISBN 978-83-933935-7-2. http://www.ichtj.waw.pl/ichtj/publ/monogr/m2015_4.htm

  21. Zimek Z, Przybytniak G, Nowicki A, Mirkowski K, Roman K (2014) Optimization of electron beam crosslinking for cables. Rad Phys Chem 94:161–165

    Article  CAS  Google Scholar 

  22. Hertz DL (1984) Theory and practice of vulcanization. Elastomerics, Cheshire

    Google Scholar 

  23. Mohammed SAH, Walker J (1986) Application of electron beam radiation technology in tire manufacturing. Rubber Chem Technol 59(3):482–496

    Article  CAS  Google Scholar 

  24. Makuuchi K (2001) Radiation processing in Japan. In: JAERI-conference 05, pp 266–271. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/33/010/33010161.pdf

  25. Makuuchi K, Markovic V (1991) Radiation processing of j natural rubber latex. IAEA Bull 33(1):25–28

    Google Scholar 

  26. Rosiak JM, Ulański P, Rzeżnicki A (1995) Hydrogels for medical applications. Nucl Instr Meth Phys Res B105:335–339

    Article  Google Scholar 

  27. Yu H, Xu X, Chen X, Hao J, Jing X (2006) Medicated wound dressings based on poly(vinyl alcohol)/poly(N-vinyl pyrrolidone)/chitosan hydrogels. J Appl Polym Sci 101(4):2453–2463

    Article  CAS  Google Scholar 

  28. Trageser DA (1977) Crosslinked polyethylene foam processes. Radiat Phys Chem 9(1–3):261–270

    CAS  Google Scholar 

  29. Radiation crosslinking—enhancing plastics properties by radiation (2017) BGS beta—gamma service. http://en.bgs.eu/wp-content/uploads/2017/02/BGS_radiation_crosslinking_en-1.pdf

  30. Below H, Quilitz G, Schumann W (2005) Electron beam crosslinking of large diameter thick-walled polyethylene pipes. Plast Rubber Compos 34(1):34–39

    Article  CAS  Google Scholar 

  31. Okabe S, Nishikawa S, Hayami H, Nakabayashi M, Emoto Y (2005) Development of radiation crosslinking nylon molding compound. SEI Tech Rev 59:48–51

    Google Scholar 

  32. Cheng S, Phillips E (2006) Rheological studies on radiation modified polyethylene resins. In: Society of Plastics Engineers (SPE) ANTEC conference, Charlotte. www.raprex.com

  33. Ivanov VS (1992) Radiation chemistry of polymers. VSP, Utrecht, The Netherlands

    Google Scholar 

  34. Accelerators for America’s future, DOE, Washington (2019). https://science.energy.gov/~/media/hep/pdf/accelerator-rd-stewardship/Report.pdf

  35. Applications of particle accelerators in Europe, EuCARD 2, CERN, Geneva (2017). http://apae.ific.uv.es/apae/wp-content/uploads/2015/04/EuCARD_Applications-of-Accelerators-2017.pdf

Download references

Acknowledgements

This project has received funding from the European Union’s (EU) Horizon 2020 Research and Innovation programme under ARIES Grant Agreement No. 730871 and by Ministry of Science and Higher Education (Poland) and co-financed by project 3697/H2020/2017/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej G. Chmielewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chmielewski, A.G. (2019). Radiation Crosslinking for the Cable, Rubber and Healthcare Products Industry. In: Kumar, V., Chaudhary, B., Sharma, V., Verma, K. (eds) Radiation Effects in Polymeric Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-05770-1_12

Download citation

Publish with us

Policies and ethics