Skip to main content

Augmenting Embedding with Domain Knowledge for Oral Disease Diagnosis Prediction

  • Conference paper
  • First Online:
Book cover Smart Computing and Communication (SmartCom 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11344))

Included in the following conference series:

Abstract

In this paper, we propose to add domain knowledge from the most comprehensive biomedical ontology SNOMED CT to facilitate the embedding of EMR symptoms and diagnoses for oral disease prediction. We first learn embeddings of SNOMED CT concepts by applying the TransE algorithm prevalent for representation learning of knowledge base. Secondly, the mapping from symptoms/diagnoses to biomedical concepts and the corresponding semantic relations defined in SNOMED CT are modeled mathematically. We design a neural network to train embeddings of EMR symptoms and diagnoses and ontological concepts in a coherent way, for the latter the TransE-learned vectors being used as initial values. The evaluation on real-world EMR datasets from Peking University School and Hospital Stomatology demonstrates the prediction performance improvement over embeddings solely based on EMRs. This study contributes as a first attempt to learn distributed representations of EMR symptoms and diagnoses under the constraint of embeddings of biomedical concepts from comprehensive clinical ontology. Incorporating domain knowledge can augment embedding as it reveals intrinsic correlation among symptoms and diagnoses that cannot be discovered by EMR data alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.nlm.nih.gov/healthit/snomedct/international.html.

  2. 2.

    https://github.com/thunlp/OpenKE.

References

  1. Jonnalagadda, S.R., Adupa, A.K., Garg, R.P.: Text mining of the electronic health record: an information extraction approach for automated identification and subphenotyping of HFPEF patients for clinical trials. J. Cardiovasc. transl. Res. 10(3), 313–321 (2017)

    Article  Google Scholar 

  2. Sesen, M.B., Kadir, T., Alcantara, R.B., Fox, J., Brady, M.: Survival prediction and treatment recommendation with Bayesian techniques in lung cancer. In: AMIA Annual Symposium Proceedings, pp. 838 (2012)

    Google Scholar 

  3. Mani, S., Chen, Y., Elasy, T., Clayton, W., Denny, J.: Type 2 diabetes risk forecasting from EMR data using machine learning. In: AMIA Annual Symposium Proceedings, pp. 606–615 (2012)

    Google Scholar 

  4. Mani, S., Chen, Y., Arlinghaus, L.R., Li, X., Chakravarthy, B., Bhave, R.: Early prediction of the response of breast tumors to neoadjuvant chemotherapy using quantitative MRI and machine learning. In: AMIA Annual Symposium Proceedings, pp. 868–877 (2011)

    Google Scholar 

  5. Kawaler, E., Cobian, A., Peissig, P., Cross, D., Yale, S., Craven, M.: Learning to predict post-hospitalization VTE risk from EHR data. In: AMIA Annual Symposium Proceedings, pp. 436–445 (2012)

    Google Scholar 

  6. Kim, Y.J., Lee, Y.G., Kim, J.W., Park, J.J., Ryu, B., Ha, J.W.: Highrisk Prediction from electronic medical records via deep attention networks. arXiv preprint arXiv:1712.00010 (2017)

  7. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)

    MATH  Google Scholar 

  8. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  9. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific word embedding for twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pp. 1555–1565 (2014)

    Google Scholar 

  10. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pp. 142–150 (2011)

    Google Scholar 

  11. Ganguly, D., Roy, D., Mitra, M., Jones, G. J.: Word embedding based generalized language model for information retrieval. In: 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 795–798 (2015)

    Google Scholar 

  12. Li, G., Zhang, S., Liang, J., Cao, Z., Guo, C.: An embedding-based approach for oral disease diagnosis prediction from electronic medical records. In: 2nd International Conference on Medical and Health Informatics, pp. 125–133 (2018)

    Google Scholar 

  13. Rosse, C., Mejino Jr., J.L.: A reference ontology for biomedical informatics: the foundational model of anatomy. J. Biomed. Inform. 36(6), 478–500 (2003)

    Article  Google Scholar 

  14. Hayamizu, T.F., Mangan, M., Corradi, J.P., Kadin, J.A., Ringwald, M.: The adult mouse anatomical dictionary: a tool for annotating and integrating data. Genome Biol. 6(3), R29 (2005)

    Article  Google Scholar 

  15. Golbeck, J., Fragoso, G., Hartel, F., Hendler, J., Oberthaler, J., Parsia, B.: The national cancer institute’s thesaurus and ontology. J. Web Semant. 1(1) (2003)

    Google Scholar 

  16. Donnelly, K.: SNOMED-CT: the advanced terminology and coding system for eHealth. Stud. Health Technol. Inf. 121, 279 (2006)

    Google Scholar 

  17. Guo, S., Wang, Q., Wang, B., Wang, L., Guo, L.: Semantically smooth knowledge graph embedding. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, pp. 84–94 (2015)

    Google Scholar 

  18. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  19. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings of knowledge bases. In: AAAI, p. 6 (2011)

    Google Scholar 

  20. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy function for learning with multi-relational data. Mach. Learn. 94(2), 233–259 (2014)

    Article  MathSciNet  Google Scholar 

  21. Socher, R., Chen, D., Manning, C. D., Ng, A.: Reasoning with neural tensor networks for knowledge base completion. In: Advances in Neural Information Processing Systems, pp. 926–934 (2013)

    Google Scholar 

  22. Jenatton, R., Roux, L., Bordes, A., Obozinski, R.: A latent factor model for highly multi-relational data. In: Advances in Neural Information Processing Systems, pp. 3167–3175 (2012)

    Google Scholar 

  23. Nickel, M., Tresp, V., Kriegel, H. P.: A three-way model for collective learning on multi-relational data. In: ICML, pp. 809–816 (2011)

    Google Scholar 

  24. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)

    Google Scholar 

  25. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  26. Minarro-Giménez, J.A., Marin-Alonso, O., Samwald, M.: Exploring the application of deep learning techniques on medical text corpora. Stud. Health technol. Inf. 205, 584–588 (2014)

    Google Scholar 

  27. Ye, C., Fabbri, D.: Extracting similar terms from multiple EMR-based semantic embeddings to support chart reviews. J. Biomed. Inf. 83, 63–72 (2018)

    Article  Google Scholar 

  28. Choi, E., Schuetz, A., Stewart, W. F., Sun, J.: Medical concept representation learning from electronic health records and its application on heart failure prediction. arXiv preprint arXiv:1602.03686 (2016)

  29. Choi, Y., Chiu, C.Y.I., Sontag, D.: Learning low-dimensional representations of medical concepts. AMIA Summits on Transl. Sci. Proc. 2016, 41 (2016)

    Google Scholar 

  30. Henriksson, A.: Representing clinical notes for adverse drug event detection. In: 6th International Workshop on Health Text Mining and Information Analysis, pp. 152–158 (2015)

    Google Scholar 

  31. Wang, S., Chang, X., Li, X., Long, G., Yao, L., Sheng, Q.: Diagnosis code assignment using sparsity-based disease correlation embedding. IEEE Trans. Knowl. Data Eng. 1, 1 (2016)

    Google Scholar 

  32. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding with iterative guidance from soft rules. arXiv preprint arXiv:1711.11231 (2017)

  33. Dasigi, P., Ammar, W., Dyer, C., Hovy, E. Ontology-aware token embeddings for prepositional phrase attachment. arXiv preprint arXiv:1705.02925 (2017)

  34. Ruder, S., Vulić, I., Søgaard, A.: A survey of cross-lingual word embedding models. arXiv preprint arXiv:1706.04902 (2017)

  35. Kolyvakis, P., Kalousis, A., Smith, B., Kiritsis, D.: Biomedical ontology alignment: an approach based on representation learning. J. Biomed. Semant. 9(1), 21 (2018)

    Article  Google Scholar 

  36. Diaz, G., Fokoue, A., Sadoghi, M.: EmbedS: scalable, ontology-aware graph embeddings. In: 21st International Conference on Extending Database Technology, pp. 433–436 (2018)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Key Research and Development Program of China under grant 2016YFB1000902, Projects of Beijing Municipal Science & Technology Commission, and the Natural Science Foundation of China grant 61621003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songmao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, G., Zhang, S., Liang, J., Cao, Z., Guo, C. (2018). Augmenting Embedding with Domain Knowledge for Oral Disease Diagnosis Prediction. In: Qiu, M. (eds) Smart Computing and Communication. SmartCom 2018. Lecture Notes in Computer Science(), vol 11344. Springer, Cham. https://doi.org/10.1007/978-3-030-05755-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05755-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05754-1

  • Online ISBN: 978-3-030-05755-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics