Skip to main content

Optimal Stator Design for Oxide Films Shearing Found by Physical Modelling

  • Conference paper
  • First Online:
Materials Processing Fundamentals 2019

Abstract

A new technology suggests breaking oxide films into small fragments or particles to play the role of a grain refiner. A high-shear mixer (HSM) with a rotor-stator impeller can produce mechanical breakage. Physical modelling with powders demonstrates the defragmentation potency of HSM. Optimisation methods are considered and a new design of HSM is proposed according to the experimental findings. This design improves the uniformity of mixing in the pseudo-cavern volume and exhibits the dispersion efficiency better than the design previously used. The understanding and development of high shear technology for processing of liquid metals is of great interest to the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green NR, Campbell J (1993) Statistical distributions of fracture strengths of cast A1-7Si-Mg alloy. Mater Sci Eng A 173:261–266

    Article  Google Scholar 

  2. Mi J, Harding RA, Campbell J (2004) Effects of the entrained surface film on the reliability of castings. Metall Mater Trans A 35(9):2893–2902

    Article  Google Scholar 

  3. Nyahumwa C et al (1998) Effect of mold-filling turbulence on fatigue properties of cast aluminum alloys. Paper presented at the 102nd Casting Congress, Atlanta, Georgia, 10–13 May 1998

    Google Scholar 

  4. Wang QG, Apelian D, Lados DA (2001) Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects. J Light Met 1(1):73–84

    Article  CAS  Google Scholar 

  5. Fan Z (2011) Epitaxial nucleation and grain refinement. Paper presented at the John Hunt International Symposium, Uxbridge, London, 12–14 Dec 2011

    Google Scholar 

  6. Men H, Fan Z (2011) Effects of lattice mismatch on interfacial structures of liquid and solidified Al in contact with hetero-phase substrates: MD simulations. Paper presented at the ICASP–3, Rolduc Abbey, Aachen, The Netherlands, 7–10 June 2011

    Google Scholar 

  7. Tzamtzis S, Zhang H, Xia M, Babu NH, Fan Z (2011) Recycling of high grade die casting AM series magnesium scrap with the melt conditioned high pressure die casting (MC-HPDC) process. Mater Sci Eng A 528(6):2664–2669

    Article  Google Scholar 

  8. Li HT et al (2011) Harnessing oxides in liquid metals and alloys. Paper presented at the John Hunt International Symposium, Uxbridge, London, 12–14 December 2011

    Google Scholar 

  9. Scamans G et al (2012) Melt conditioned casting of aluminum alloys. Paper presented at ICAA13, Pittsburgh, Pennsylvania, 3–7 June 2012

    Chapter  Google Scholar 

  10. Li HT, Scamans G, Fan Z (2013) Refinement of the microstructure of an Al-Mg2Si hypereutectic alloy by intensive melt shearing. Mater Sci Forum 765:97–101

    Article  Google Scholar 

  11. Patel J et al (2013) Liquid metal engineering by application of intensive melt shearing. Paper presented at LMPC 2013, Austin, Texas, 22–25 Sept 2013

    Google Scholar 

  12. Zuo YB et al (2011) Grain refinement of DC cast magnesium alloys with intensive melt shearing. Paper presented at the ICASP–3, Rolduc Abbey, Aachen, The Netherlands, 7–10 June 2011

    Google Scholar 

  13. Li HT, Wang Y, Fan Z (2012) Mechanisms of enhanced heterogeneous nucleation during solidification in binary Al–Mg alloys. Acta Mater 60:1528–1537

    Article  CAS  Google Scholar 

  14. Li HT, Xia M, Jarry P, Scamans G, Fan Z (2011) Grain refinement in a AlZnMgCuTi alloy by intensive melt shearing: A multi-step nucleation mechanism. J Cryst Growth 314(1):285–292

    Article  CAS  Google Scholar 

  15. Dybalska A (2016) Understanding and development of high shear technology for liquid metals processing. PhD thesis, Brunel University

    Google Scholar 

  16. Gupta D, Lahiri AK (1996) A water model study of the flow asymmetry inside a continuous slab casting mold. Metall Mater Trans B 27(5):757–764

    Article  Google Scholar 

  17. Xu D, Jones W, Kinzy W, Evans JW (1998) The use of particle image velocimetry in the physical modeling of flow in electromagnetic or direct-chill casting of aluminum: Part I. Development of the physical model. Metall MaterTrans B 29:1281–1288

    Article  Google Scholar 

  18. Zhang L, Yang S, Cai K, Li J, Wan X, Thomas BG (2007) Investigation of fluid flow and steel cleanliness in the continuous casting strand. Metall Mater Trans B 38(1):63–83

    Article  CAS  Google Scholar 

  19. Karcz J, Szoplik J (2004) An effect of the eccentric position of the propeller agitator on the mixing time. Chem Pap-Slovak Acad Sci 58(1):9–14

    CAS  Google Scholar 

  20. Tzanakis I, Lebon GSB, Eskin DG, Pericleous KA (2017) Characterizing the cavitation development and acoustic spectrum in various liquids. Ultrason Sonochem 34:651–662

    Article  CAS  Google Scholar 

  21. Raffel M, Willert C, Wereley S, Kompenhans K (2007) Particle imaging velocimetry—a practical guide, 2nd edn. Springer, Berlin

    Google Scholar 

  22. Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, Cambridge

    Google Scholar 

  23. Huang H, Dabiri D, Gharib M (1997) On errors of digital particle image velocimetry. MST 8(12):1427–1440

    CAS  Google Scholar 

  24. Doucet L, Ascanio G, Tanguy PA (2005) Hydrodynamics characterization of rotor-stator mixer with viscous fluids. Chem Eng Res Des 83(10):1186–1195

    Article  CAS  Google Scholar 

  25. Barailler F, Heniche M, Tanguy PA (2006) CFD analysis of a rotor-stator mixer with viscous fluids. Chem Eng Sci 61(9):2888–2894

    Article  CAS  Google Scholar 

  26. Apparatus and method for high-shear mixing. US. Patent Application, US20160271575A1. 22 Sept 2016

    Google Scholar 

  27. Rayleigh JWS (1891) Some applications of photography. Nature 44:249–254

    Article  Google Scholar 

  28. Nollet, JA (1749) Recherches sur les causes particulieres des phénoménes électriques, et sur les effets nuisibles ou avantageux qu’on peut en attendre. A Paris: chez les Freres Guerin, Paris

    Google Scholar 

  29. Eggers J, Villermaux E (2008) Physics of liquid jets. Rep Prog Phys 71(3):036601

    Article  Google Scholar 

  30. Gohil TB, Saha AK, Muralidhar K (2010) Control of flow in forced jets: a comparison of round and square cross sections. J Vis 13:141–149

    Article  CAS  Google Scholar 

  31. Brodkey RS, Hershey HC (2003) Transport phenomena: a unified approach. Brodkey Publishing, Columbus, Ohio

    Google Scholar 

  32. Mortensen HH, Calabrese RV, Innings F, Rosendahl L (2011) Characteristics of batch rotor–stator mixer performance elucidated by shaft torque and angle resolved PIV measurements. Can J Chem Eng 89(5):1076–1095

    Article  CAS  Google Scholar 

  33. Utomo AD (2009) Flow patterns and energy dissipation rates in batch rotor-stator mixers. PhD thesis, University of Birmingham

    Google Scholar 

  34. Roesler J, Harders H, Baeker M (2007) Mechanical behaviour of engineering materials. Springer, Berlin

    Google Scholar 

  35. Smirnov BM (1992) Cluster Ions and van der Waals Molecules. CRC Press, Boca Raton

    Google Scholar 

  36. Il’inskii YA, Keldysh LV (2013) Electromagnetic response of material media. Springer, Berlin

    Google Scholar 

  37. Men H, Jiang B, Fan Z (2010) Mechanisms of grain refinement by intensive shearing of AZ91 alloy melt. Acta Mater 58(18):6526–6534

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Allocation of the equipment in the BCAST (Brunel University London) is highly appreciated. The first author is grateful for Ph.D. study funding from the Institute of Materials and Manufacturing, Brunel University London. The authors would also like to acknowledge Prof. Z. Fan, who initiated this research. The PIV measuring system was provided by the EPSRC Engineering Instrument Pool.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Dybalska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dybalska, A., Eskin, D.G., Patel, J.B. (2019). Optimal Stator Design for Oxide Films Shearing Found by Physical Modelling. In: Lambotte, G., Lee, J., Allanore, A., Wagstaff, S. (eds) Materials Processing Fundamentals 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05728-2_17

Download citation

Publish with us

Policies and ethics