Skip to main content

Foveated Ray Tracing for VR Headsets

  • Conference paper
  • First Online:
Book cover MultiMedia Modeling (MMM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11295))

Included in the following conference series:

Abstract

In this work, we propose a real-time foveated ray tracing system, which mimics the non-uniform and sparse characteristic of the human retina to reduce spatial sampling. Fewer primary rays are traced in the peripheral regions of vision, while sampling frequency for the fovea region traced by the eye tracker is maximised. Our GPU-accelerated ray tracer uses a sampling mask to generate a non-uniformly distributed set of pixels. Then, the regular Cartesian image is reconstructed based on the GPU-accelerated triangulation method with the barycentric interpolation. The temporal anti-aliasing is applied to reduce the flickering artefacts. We perform a user study in which people evaluate the visibility of artefacts in the peripheral region of vision where sampling is reduced. This evaluation is conducted for a number of sampling masks that mimic the sensitivity to contrast in the human eyes but also test different sampling strategies. The sampling that follows the gaze-dependent contrast sensitivity function is reported to generate images of the best quality. We test the performance of the whole system on the VR headset. The achieved frame-rate is twice higher in comparison to the typical Cartesian sampling and cause only barely visible degradation of the image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Advanced Micro Devices, Inc.: Radeon-rays library, version 2.0 (2016). http://gpuopen.com/gaming-product/radeon-rays/

  2. Akenine-Möller, T., Haines, E., Hoffman, N.: Real-Time Rendering, 3rd edn. A. K. Peters Ltd., Natick (2008)

    Google Scholar 

  3. Chwesiuk, M., Mantiuk, R.: Measurements of contrast detection thresholds for peripheral vision using non-flashing stimuli. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds.) IDT 2017. SIST, vol. 73, pp. 258–267. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59424-8_24

    Chapter  Google Scholar 

  4. V Corporation: Openvr library, version 1.0.10 (2017). https://github.com/ValveSoftware/openvr

  5. Fujita, M., Harada, T.: Foveated real-time ray tracing for virtual reality headset. Technical report, Light Transport Entertainment Research (2014)

    Google Scholar 

  6. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54. ACM (1996)

    Google Scholar 

  7. Guenter, B., Finch, M., Drucker, S., Tan, D., Snyder, J.: Foveated 3d graphics. ACM Trans. Graph. 31(6), 164:1–164:10 (2012)

    Article  Google Scholar 

  8. Hunt, W.: Virtual reality: the next great graphics revolution. Keynote Talk HPG (2015)

    Google Scholar 

  9. Levoy, M., Whitaker, R.: Gaze-directed volume rendering. ACM SIGGRAPH Comput. Graph. 24(2), 217–223 (1990)

    Article  Google Scholar 

  10. Loschky, L., McConkie, G., Yang, J., Miller, M.: The limits of visual resolution in natural scene viewing. Vis. Cogn. 12(6), 1057–1092 (2005)

    Article  Google Scholar 

  11. Mantiuk, R., Bazyluk, B., Mantiuk, R.K.: Gaze-driven object tracking for real time rendering. Comput. Graph. Forum 32(2), 163–173 (2013)

    Article  Google Scholar 

  12. Mantiuk, R.K., Tomaszewska, A., Mantiuk, R.: Comparison of four subjective methods for image quality assessment. Comput. Graph. Forum 31(8), 2478–2491 (2012)

    Article  Google Scholar 

  13. Murphy, H.A., Duchowski, A.T., Tyrrell, R.A.: Hybrid image/model-based gaze-contingent rendering. ACM Trans. Appl. Percept. (TAP) 5(4), 22 (2009)

    Google Scholar 

  14. Ohshima, T., Yamamoto, H., Tamura, H.: Gaze-directed adaptive rendering for interacting with virtual space. In: 1996 Proceedings of the IEEE Conference on Virtual Reality Annual International Symposium, pp. 103–110. IEEE (1996)

    Google Scholar 

  15. Palmer, S.E.: Vision Science: Photons to Phenomenology, vol. 1. MIT Press, Cambridge (1999)

    Google Scholar 

  16. Patney, A., et al.: Perceptually-based foveated virtual reality. In: ACM SIGGRAPH 2016 Emerging Technologies, p. 17. ACM (2016)

    Google Scholar 

  17. Peli, E., Yang, J., Goldstein, R.B.: Image invariance with changes in size: the role of peripheral contrast thresholds. JOSA A 8(11), 1762–1774 (1991)

    Article  Google Scholar 

  18. Roth, T., Weier, M., Hinkenjann, A., Li, Y., Slusallek, P.: An analysis of eye-tracking data in foveated ray tracing. In: IEEE Second Workshop on Eye Tracking and Visualization (ETVIS), pp. 69–73. IEEE (2016)

    Google Scholar 

  19. Siekawa, A.: Gaze-dependent ray tracing. In: Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (Non-peer-reviewed) (2014)

    Google Scholar 

  20. Siekawa, A.: Image reconstruction from spatially non-uniform samples. In: Proceedings of CESCG 2017: The 21th Central European Seminar on Computer Graphics (Non-peer-reviewed) (2017)

    Google Scholar 

  21. Stengel, M., Magnor, M.: Gaze-contingent computational displays: boosting perceptual fidelity. IEEE Sig. Process. Mag. 33(5), 139–148 (2016)

    Article  Google Scholar 

  22. Vaidyanathan, K., et al.: Coarse pixel shading. In: Proceedings of High Performance Graphics, pp. 9–18. Eurographics Association (2014)

    Google Scholar 

  23. Wandell, B.A.: Foundations of Vision, vol. 8. Sinauer Associates, Sunderland (1995)

    Google Scholar 

  24. Watson, B., Walker, N., Hodges, L.F., Worden, A.: Managing level of detail through peripheral degradation: effects on search performance with a head-mounted display. ACM Trans. Comput.-Hum. Interact. (TOCHI) 4(4), 323–346 (1997)

    Article  Google Scholar 

  25. Weier, M., et al.: Perception-driven accelerated rendering. Comput. Graph. Forum 36(2), 611–643 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The project was funded by the Polish National Science Centre (decision number DEC-2013/09/B/ST6/02270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radosław Mantiuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siekawa, A., Chwesiuk, M., Mantiuk, R., Piórkowski, R. (2019). Foveated Ray Tracing for VR Headsets. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, WH., Vrochidis, S. (eds) MultiMedia Modeling. MMM 2019. Lecture Notes in Computer Science(), vol 11295. Springer, Cham. https://doi.org/10.1007/978-3-030-05710-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05710-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05709-1

  • Online ISBN: 978-3-030-05710-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics