Skip to main content

Improving Robustness of Image Tampering Detection for Compression

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11295))

Included in the following conference series:

Abstract

The task of verifying the originality and authenticity of images puts numerous constraints on tampering detection algorithms. Since most images are acquired on the internet, there is a significant probability that they have undergone transformations such as compression, noising, resizing and/or filtering, both before and after the possible alteration. Therefore, it is essential to improve the robustness of tampered image detection algorithms for such manipulations. As compression is the most common type of post-processing, we propose in our work a robust framework against this particular transformation. Our experiments on benchmark datasets show the contribution of our proposal for camera model identification and image tampering detection compared to recent literature approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amerini, I., Uricchio, T., Ballan, L., Caldelli, R.: Localization of jpeg double compression through multi-domain convolutional neural networks. In: Proceedings of IEEE CVPR Workshop on Media Forensics, vol. 3 (2017)

    Google Scholar 

  2. Barni, M., et al.: Aligned and non-aligned double JPEG detection using convolutional neural networks. J. Vis. Commun. Image Represent. 49, 153–163 (2017)

    Article  Google Scholar 

  3. Bayar, B., Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 5–10. ACM (2016)

    Google Scholar 

  4. Bayar, B., Stamm, M.C.: Design principles of convolutional neural networks for multimedia forensics. Electron. Imaging 2017(7), 77–86 (2017)

    Article  Google Scholar 

  5. Bayar, B., Stamm, M.C.: Towards open set camera model identification using a deep learning framework. In: The 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2018)

    Google Scholar 

  6. Bengio, Y., et al.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bondi, L., Baroffio, L., Güera, D., Bestagini, P., Delp, E.J., Tubaro, S.: First steps toward camera model identification with convolutional neural networks. IEEE Sig. Process. Lett. 24(3), 259–263 (2017)

    Article  Google Scholar 

  8. Bondi, L., Lameri, S., Güera, D., Bestagini, P., Delp, E.J., Tubaro, S.: Tampering detection and localization through clustering of camera-based CNN features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1855–1864 (2017)

    Google Scholar 

  9. Bunk, J., et al.: Detection and localization of image forgeries using resampling features and deep learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1881–1889. IEEE (2017)

    Google Scholar 

  10. Cao, H., Kot, A.C.: Accurate detection of demosaicing regularity for digital image forensics. IEEE Trans. Inf. Forensics Secur. 4(4), 899–910 (2009)

    Article  Google Scholar 

  11. Chen, C., Zhao, X., Stamm, M.C.: Detecting anti-forensic attacks on demosaicing-based camera model identification. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 1512–1516. IEEE (2017)

    Google Scholar 

  12. Farid, H.: Photo Forensics. MIT Press, Cambridge (2016)

    Google Scholar 

  13. Gloe, T., Böhme, R.: The ‘Dresden image Database’ for benchmarking digital image forensics. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1584–1590. ACM (2010)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Huh, M., Liu, A., Owens, A., Efros, A.A.: Fighting fake news: image splice detection via learned self-consistency. arXiv preprint arXiv:1805.04096 (2018)

  16. Kee, E., Johnson, M.K., Farid, H.: Digital image authentication from JPEG headers. IEEE Trans. Inf. Forensics Secur. 6(3–2), 1066–1075 (2011)

    Article  Google Scholar 

  17. Kharrazi, M., Sencar, H.T., Memon, N.: Blind source camera identification. In: 2004 International Conference on Image Processing, ICIP 2004, vol. 1, pp. 709–712. IEEE (2004)

    Google Scholar 

  18. Kirchner, M., Gloe, T.: Forensic camera model identification. In: Handbook of Digital Forensics of Multimedia Data and Devices, pp. 329–374 (2015)

    Chapter  Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  20. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  21. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  22. Marra, F., Poggi, G., Sansone, C., Verdoliva, L.: Evaluation of residual-based local features for camera model identification. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds.) ICIAP 2015. LNCS, vol. 9281, pp. 11–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23222-5_2

    Chapter  Google Scholar 

  23. Marra, F., Poggi, G., Sansone, C., Verdoliva, L.: A study of co-occurrence based local features for camera model identification. Multimedia Tools Appl. 76(4), 4765–4781 (2017)

    Article  Google Scholar 

  24. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: FaceForensics: a large-scale video dataset for forgery detection in human faces. arXiv preprint arXiv:1803.09179 (2018)

  25. Stamm, M.C., Wu, M., Liu, K.R.: Information forensics: an overview of the first decade. IEEE Access 1, 167–200 (2013)

    Article  Google Scholar 

  26. Swaminathan, A., Wu, M., Liu, K.R.: Nonintrusive component forensics of visual sensors using output images. IEEE Trans. Inf. Forensics Secur. 2(1), 91–106 (2007)

    Article  Google Scholar 

  27. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  28. Thai, T.H., Cogranne, R., Retraint, F.: Camera model identification based on the heteroscedastic noise model. IEEE Trans. Image Process. 23(1), 250–263 (2014)

    Article  MathSciNet  Google Scholar 

  29. Tuama, A., Comby, F., Chaumont, M.: Camera model identification with the use of deep convolutional neural networks. In: 2016 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2016)

    Google Scholar 

  30. Wen, L., Qi, H., Lyu, S.: Contrast enhancement estimation for digital image forensics. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 14(2), 49 (2018)

    Google Scholar 

  31. Xu, G., Shi, Y.Q.: Camera model identification using local binary patterns. In: 2012 IEEE International Conference on Multimedia and Expo (ICME), pp. 392–397. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boubacar Diallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diallo, B., Urruty, T., Bourdon, P., Fernandez-Maloigne, C. (2019). Improving Robustness of Image Tampering Detection for Compression. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, WH., Vrochidis, S. (eds) MultiMedia Modeling. MMM 2019. Lecture Notes in Computer Science(), vol 11295. Springer, Cham. https://doi.org/10.1007/978-3-030-05710-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05710-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05709-1

  • Online ISBN: 978-3-030-05710-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics