Skip to main content

“Strong” Turing-Hopf Instability for Reaction-Diffusion Systems

  • Conference paper
  • First Online:
Book cover Analysis and Partial Differential Equations: Perspectives from Developing Countries

Abstract

Turing-Hopf instabilities for reaction-diffusion systems provide spatially inhomogeneous time-periodic patterns of chemical concentrations. In this presentation, it is shown the parameter space in which the reaction-diffusion system modelling glycolysis and the Lengyel-Epstein model could show twinkling patterns. To do so, we follow the Ricard-Mischler procedure in Ricard and Mischler (J Nonlinear Sci 19(5):467–496, 2009, [18]), i.e., considering this phenomenom as a consequence of the instability generated by diffusion on the limit cycle which appears due to a Hopf bifurcation about the spatially homogeneous steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations. J. Theor. Biol. 245(2), 220–229 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bogoliubov, N.N., Mitropolski, Y.A.: Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Breach Science Publishers, New York (1961)

    Google Scholar 

  3. Díaz Rodrígues, L.A., Mistro, D.C., Petrovskii, S.: Pattern formation, long-term transients, and the Turing-Hopf Bifurcation in a space- and time-discrete predator-prey system. Bull. Math. Biol. (2010). https://doi.org/10.1007/s11538-010-9593-5

    Article  MathSciNet  Google Scholar 

  4. Egaña Fernández, G., Rodríguez Ricard, M.: Emergence and collapse of limit cycles in the glycolysis model. Revista Investigación Operacional 39(1), 23–32 (2018)

    MathSciNet  Google Scholar 

  5. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, New York (1981)

    Book  Google Scholar 

  6. Just, W., Bose, M., Bose, S., Engel, H., Schöll, E.: Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system. Phys. Rev. E. 64(026219), 1–12 (2001). https://doi.org/10.1103/PhysRevE.64.026219

    Article  Google Scholar 

  7. Kuznetsov, YuA: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol. 112, 3rd edn. Springer Science+Business Media, New York (2004)

    Book  Google Scholar 

  8. Lacitignola, D., Bozzini, B., Sgura,I.: Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay. Eur. J. Appl. Math. (2014). https://doi.org/10.1017/S0956792514000370

    Article  MathSciNet  Google Scholar 

  9. Leiva, H.: Stability of a periodic solution for a system of parabolic equations. Appl. Anal. 60, 277–300 (1996)

    Article  MathSciNet  Google Scholar 

  10. Lengyel, I., Epstein, I.R.: Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model. Sciences 251, 650–652 (1991)

    Article  Google Scholar 

  11. Lengyel, I., Epstein, I.R.: A chemical approach to designing Turing patterns in reaction-diffusion system. Proc. Natl. Acad. Sci. USA 89, 3977–3979 (1992)

    Article  Google Scholar 

  12. Liu, P., Shi, J., Wang, Y., Feng, X.: Bifurcation analysis of reaction-diffusion Schnakenberg model. J. Math. Chem. 51, 2001–2019 (2013). https://doi.org/10.1007/s10910-013-0196-x

    Article  MathSciNet  Google Scholar 

  13. Marsden, J.E., McCracken, M.: The Hopf Bifurcation and its Applications. Springer, New York (1976)

    Book  Google Scholar 

  14. Meixner, M., De Wit, A., Bose, S., Schöll, E.: Generic spatiotemporal dynamics near codimension-two Turing-Hopf bifurcations. Phys. Rev. E 55(6), 6690–6697 (1997)

    Article  MathSciNet  Google Scholar 

  15. Murray, J.D.: Mathematical Biology I: An Introduction. Interdisciplinary Applied Mathematics, vol. 17, 3rd edn. Springer, New York (2001)

    Google Scholar 

  16. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics, vol. 18, 3rd edn. Springer, New York (2003)

    MATH  Google Scholar 

  17. Ricard, M.R.: On degenerate planar Hopf bifurcations. J. Phys. A. Math. Theor. 44, 065202 (2011)

    Article  MathSciNet  Google Scholar 

  18. Ricard, M.R., Mischler, S.: Turing instabilities at Hopf bifurcation. J. Nonlinear Sci. 19(5), 467–496 (2009). https://doi.org/10.1007/s00332-009-9041-6

    Article  MathSciNet  Google Scholar 

  19. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  20. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences, vol. 59, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  21. Sarría-González, J., Ricard, M.R.: Twinkling patterns for the Lengyel-Epstein reaction-diffusion model (2018) (in preparation)

    Google Scholar 

  22. Settani, G., Sgura, I.: Devising efficient numerical methods for oscillating patterns in reaction-diffusion systems. J. Comput. Appl. Math. (2015). https://doi.org/10.1016/j.cam.2015.04.044

    Article  MathSciNet  Google Scholar 

  23. Sgura, I., Bozzini, B., Lacitignola, D.: Numerical approximation of Turing patterns in electrodeposition by ADI methods. J. Comput. Appl. Math 236, 4132–4147 (2012)

    Article  MathSciNet  Google Scholar 

  24. Sgura, I., Bozzini, B., Lacitignola, D.: Numerical approximation of oscillating Turing patterns in a reaction-diffusion model for electrochemical material growth. In: AIP Conference Proceedings, vol. 1493, pp. 896–903. Melville, New York (2012). https://doi.org/10.1063/1.4765594

  25. Strier, D.E., Ponce, D.S.: Turing patterns inside cells. PLoS ONE 2, (10), e1053 (2007). https://doi.org/10.1371/journal.pone.0001053

    Article  Google Scholar 

  26. Turing, A.M.: The chemical basis for morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Google Scholar 

  27. Wang, L., Zhao, H.: Hopf bifurcation and Turing instability of 2-D Lengyel-Epstein system with reaction-diffusion terms. Appl. Math. Comput. 21, 9229–9244 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Wu, X.P., Eshete, M.: Bautin bifurcation for the Lengyel-Epstein system. J. Math. Chem. 52, 2570–2580 (2014). https://doi.org/10.1007/s10910-014-0401-6

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, L., Berenstein, I., Epstein, I.R.: Segmented Waves from a Spatiotemporal Transverse Wave Instability. Phys. Rev. Lett. 95, 3, 038303 (2005). https://doi.org/10.1103/PhysRevLett.95.038303

  30. Yi, F., Wei, J., Shi, J.: Diffusion-driven instability and bifurcation in the Lengyel-Epstein system. Nonlinear Anal. Real World Appl. 9, 1038–1051 (2008)

    Article  MathSciNet  Google Scholar 

  31. Zhou, J., Shi, J.: Pattern formation in a general glycolysis reaction-diffusion system. IMA J. Appl. Math. 13, 1–36 (2015). https://doi.org/10.1093/imamat/hxv013

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Mariano Rodríguez Ricard would like to express his gratitude to the organizers of the ODA Week at Imperial College London (Nov 23-28, 2016), Prof. Michael Ruzhansky and Dr. Julio Delgado, for their support and cordiality during the workshop.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Rodríguez Ricard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Egaña Fernández, G., Sarría González, J., Ricard, M.R. (2019). “Strong” Turing-Hopf Instability for Reaction-Diffusion Systems. In: Delgado, J., Ruzhansky, M. (eds) Analysis and Partial Differential Equations: Perspectives from Developing Countries. Springer Proceedings in Mathematics & Statistics, vol 275. Springer, Cham. https://doi.org/10.1007/978-3-030-05657-5_9

Download citation

Publish with us

Policies and ethics