Skip to main content

Existence and Numerical Computation of Standing Wave Solutions for a System of Two Coupled Schrödinger Equations

  • Conference paper
  • First Online:
Analysis and Partial Differential Equations: Perspectives from Developing Countries

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 275))

  • 453 Accesses

Abstract

In this paper, we consider the existence of a type of stationary wave of a system of two coupled Schrödinger equations with variable coefficients, which can be employed to describe the interaction among propagating modes in nonlinear optics and Bose-Einstein condensates (BECs), for instance. To prove existence of these solutions, we use some existing fixed point theorems for completely continuous operators defined in a cone in a Banach space. Furthermore, some numerical approximations of stationary waves are computed by using a spectral collocation technique combined with a Newton’s iteration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muñoz Grajales, J.C.: Vector solitons of a coupled Schrödinger system with variable coefficients, Adv. Math. Phys. 2016, Article ID 5787508, 19 (2016)

    Google Scholar 

  2. Kivshar, YuS, Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003)

    Google Scholar 

  3. Sulem, C., Sulem, P.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Springer, Berlin (1999)

    MATH  Google Scholar 

  4. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatio-temporal optical solitons. J. Opt. B Quantum Semiclassical Opt. 7, R53 (2005)

    Article  Google Scholar 

  5. Serkin, V.N., Hasegawa, A.: Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502–5 (2000)

    Article  Google Scholar 

  6. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Article  Google Scholar 

  7. Salerno, M., Konotop, V.V., Bludov,Yu.V.: Long-living Bloch oscillations of matter waves in periodic potentials. Phys. Rev. Lett. 101, 030405 (2008)

    Google Scholar 

  8. Ostrovskaya, E.A., Kivshar, Y.S., Lisak, M., Hall, B., Cattani, F.: Coupled-mode theory for Bose-Einstein condensates. Phys. Rev. A 61, 031601(R) (2000)

    Article  Google Scholar 

  9. Yang, Q., Zhang, J.F.: Bose-Einstein solitons in time-dependent linear potential. Opt. Commun. 258, 35–42 (2006)

    Article  Google Scholar 

  10. Radha, R., Vinayagam, P.S., Sudharsan, J.B., Malomed, B.A.: Persistent bright solitons in sign-indefinite coupled nonlinear Schrödinger equations with a time-dependent harmonic trap. Commun. Nonlinear Sci. Numer. Simul. 31(1–3), 30–39 (2016)

    Article  MathSciNet  Google Scholar 

  11. Ieda, J., Miyakawa, T., Wadati, M.: Exact analysis of soliton dynamics in spinor Bose-Einstein condensates. Phys. Rev. Lett. 93, 194102 (2004)

    Article  Google Scholar 

  12. Feijoo, D., Paredes, A., Michinel, H.: Outcoupling vector solitons from a Bose-Einstein condensate with time-dependent interatomic forces. Phys. Rev. A 87, 063619 (2013)

    Article  Google Scholar 

  13. Yan, Z., Chow, K.W., Malomed, B.A.: Exact stationary wave patterns in three coupled nonlinear Schrödinger/Gross-Pitaevskii equations. Chaos, Solitons and Fractals 42, 3013–3019 (2009)

    Article  MathSciNet  Google Scholar 

  14. Ho, T.L.: Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742 (1998)

    Article  Google Scholar 

  15. Law, C.K., Pu, H., Bigelow, N.P.: Quantum spins mixing in spinor Bose-Einstein condensates. Phys. Rev. Lett. 81, 5257 (1998)

    Article  Google Scholar 

  16. Ohmi, T., Machida, K.J.: Bose-Einstein condensation with internal degrees of freedom in alkali atom gases. J. Phys. Soc. Jpn. 67, 1822 (1998)

    Article  Google Scholar 

  17. Ieda, J., Miyakawa, T., Wadati, M.: Matter-wave solitons in an \(F=1\) spinor Bose-Einstein condensate. J. Phys. Soc. Jpn. 73, 2996 (2004)

    Article  Google Scholar 

  18. Wadati, M., Tsuchida, N.: Wave propagations in the \(F=1\) spinor Bose-Einstein condensates. J. Phys. Soc. Jpn. 75, 014301 (2006)

    Article  Google Scholar 

  19. Uchiyama, M., Ieda, J., Wadati, M.: Dark solitons in \(F=1\) spinor Bose-Einstein condensate. J. Phys. Soc. Jpn. 75, 064002 (2006)

    Article  Google Scholar 

  20. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press (2001)

    Google Scholar 

  21. Belmonte-Beitia, J., Pérez-García, V.M., Brazhnyi, V.: Solitary waves in coupled nonlinear Schrödinger equations with spatially inhomogeneous nonlinearities. Commun. Nonlinear Sci. Numer. Simul. 16(1), 158–172 (2011)

    Article  MathSciNet  Google Scholar 

  22. Belmonte-Beitia, J., Pérez-García, V.M., Torres, P.J.: Solitary waves for linearly coupled nonlinear Schrödinger equations with inhomogeneous coefficients. J. Nonlinear Sci. 19(4), 437–451 (2009)

    Article  MathSciNet  Google Scholar 

  23. Chu, J., O’Regan, D., Zhang, M.: Positive solutions and eigenvalue intervals for nonlinear systems. Proc. Indian Acad. Sci. (Math. Sci.) 117(1), 85–94 (2003)

    Article  MathSciNet  Google Scholar 

  24. Jiang, D., Wei, J., Zhang, B.: Positive periodic solutions of functional differential equations and population models. Electron. J. Differ. Equ. 71(1–13) (2002)

    Google Scholar 

  25. Stuart, C.A.: Guidance properties of nonlinear planar waveguides. Arch. Ration. Mech. Anal. 125, 145–200 (1993)

    Article  MathSciNet  Google Scholar 

  26. Torres, P.J.: Guided waves in a multi-layered optical structure. Nonlinearity 19, 2103–2113 (2006)

    Article  MathSciNet  Google Scholar 

  27. Zima, M.: On positive solutions of boundary value problems on the half-line. J. Math. Anal. Appl. 259, 127–136 (2001)

    Article  MathSciNet  Google Scholar 

  28. Jing Su, J., Gao, Y.: Dark solitons for a (2+1)-dimension coupled nonlinear Schrödinger system with time-dependent coefficients in an optical fiber. Superlattices Microstruct. 104, 498–508 (2017)

    Article  Google Scholar 

  29. Han, L., Huang, Y., Liu, H.: Solitons in coupled nonlinear Schrödinger equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3063–3073 (2014)

    Article  MathSciNet  Google Scholar 

  30. Wang, L., Zhang, L., Zhu, Y., Qi, F., Wang, P., Guo, R., Li, M.: Modulational instability, nonautonomous characteristics and semirational solutions for the coupled nonlinear Schrödinger equations in inhomogeneous fibers. Commun. Nonlinear Sci. Numer. Simul. 40, 216–237 (2017)

    Article  MathSciNet  Google Scholar 

  31. Bose, S.N.: Plank’s law and light quantum hypothesis. Z. Phys. 26, 178–181 (1924)

    Article  Google Scholar 

  32. Anderson, M.H., Ensher, J.R., Mattews, M.R., Weiman, C.E., Cornell, E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  Google Scholar 

  33. Theis, M., Thalhammer, G., Winkler, K., Hellwing, M., Ruff, G., Grimm, R., Hecker Denschlag, J.: Tuning the scattering length with an optically induced Feshbach resonance. Phys. Rev. Lett. 93, 123001 (2004)

    Google Scholar 

  34. Rodas-Verde, M.I., Michinel, H., Pérez-García, V.M.: Controllable soliton emission from a Bose-Einstein condensate. Phys. Rev. Lett. 95(15) 153903 (2005)

    Google Scholar 

  35. Teocharis, G., Schmelcher, P., Kevrekidis, P.G., Frantzeskakis, D.J.: Matter-wave solitons of collisionally inhomogeneous condensates. Phys. Rev. A 72, 033614 (2005)

    Article  Google Scholar 

  36. Primatorowa, M.T., Stoychev, K.T., Kamburova, R.S.: Interactions of solitons with extended nonlinear defects. Phys. Rev. E 72, 036608 (2005)

    Article  Google Scholar 

  37. Abdullaev, F.K., Garnier, J.: Propagation of matter-wave solitons in periodic and random nonlinear potentials. Phys. Rev. A 72, 061605 (2005)

    Article  Google Scholar 

  38. Garnier, J., Abdullaev, F.K.: Transmission of matter-wave solitons through nonlinear traps and barriers. Phys. Rev. A 74, 013604 (2006)

    Article  Google Scholar 

  39. Krasnosel’skii, M.A.: Positive Solutions of Operator Equations. P. Noordhoff, Groningen (1964)

    Google Scholar 

Download references

Acknowledgments

This research was supported by Colciencias and Universidad del Valle, Calle 13 No. 100-00, Cali-Colombia, under the research project 1106-712-50006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Muñoz Grajales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muñoz Grajales, J.C., Vargas, L.F. (2019). Existence and Numerical Computation of Standing Wave Solutions for a System of Two Coupled Schrödinger Equations. In: Delgado, J., Ruzhansky, M. (eds) Analysis and Partial Differential Equations: Perspectives from Developing Countries. Springer Proceedings in Mathematics & Statistics, vol 275. Springer, Cham. https://doi.org/10.1007/978-3-030-05657-5_12

Download citation

Publish with us

Policies and ethics