Skip to main content

Material Removal Rate and Cutting Force of AlSi/10%AlN Metal Matrix Composite Material in Milling Process Using Uncoated Inserts

  • Chapter
  • First Online:
Advanced Engineering for Processes and Technologies

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 102))

  • 564 Accesses

Abstract

A machining process has been conducted to study the machining performance of aluminum silicon alloy (AlSi) metal matrix composite which has been reinforced with aluminum nitride (AlN) using the uncoated tool of inserts. Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to a fractional factorial array L9 of the Taguchi method. Statistical analysis including the signal-to-noise (S/N) ratio and analysis of variance was applied to study the characteristic performance of cutting speeds, feed rates and depths of cut during the milling operation. The machining performances were observed through material removal rate and cutting force, and these measurements were analyzed using the Taguchi method. From the Taguchi analysis, it was found that a cutting speed of 300 m/min; feed rate of 0.8 mm/tooth and depth of cut of 0.4 mm were the optimum machining parameters for the material removal rate, while the cutting speed of 370 m/min; feed rate of 0.4 mm/tooth and depth of cut of 0.3 mm were the optimum machining parameters for the cutting force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Srinivasan, A., Arunachalam, R., Ramesh, S., Senthilkumaar, J.S.: Machining performance study on metal matrix composites-a response surface methodology approach. Am. J. Appl. Sci. 9(4), 478–483 (2012)

    Article  Google Scholar 

  2. Chandrasekaran, M., Devarasiddappa, D.: Development of Predictive Model for Surface Roughness in end Milling of Al-SiCp Metal Matrix Composites using Fuzzy Logic, vol. 68, World Academy of Science, Engineering and Technology (2012)

    Google Scholar 

  3. Tomadi, S.H., Ghani, J.A., Haron, C.H., Daud, A.R.: Optimization of cutting parameter on tool life and surface roughness in end milling of AlSi/AlN MMC. In: Taguchi Method and Grey Relational Analysis. ICRQE 13, Proceeding (2013)

    Google Scholar 

  4. Abdullah, Y.: Fabrikasi Dan Pencirian Komposit Al-Si Diperkuat Zarah Halus SiC Dengan Menggunakan Tuangan Anduk. Universiti Kebangsaan Malaysia, Bangi, Selangor (2009)

    Google Scholar 

  5. Babu, N.H., Fan, Z., Eskin, D.G.: Application of external fields to technology composite materials. In: TMS2013 Annual Meeting Supplemental Proceedings TMS (2013)

    Google Scholar 

  6. Tomadi, S.H., Ghani, J.A., Che Hassan, C.H., Daud, A.R.: Effect of machining parameter on tool wear and surface roughness of Al-AlN reinforce MMC in end milling machining. J. Eng. E-trans. Electron. J. Univ. Malaya (EJUM) (ISSN 1823-6379) (2011)

    Google Scholar 

  7. Wang, X., Feng, C.X.: Development of empirical model for surface roughness prediction in finish turning. Int. J. Adv. Manuf. Technol. 20(5), 348–356 (2002)

    Article  Google Scholar 

  8. Tomadi, S.H., Ghani, J.A., Che Haron, C.H., Daud, A.R.: Optimation of cutting parameters for end milling AlSi/AlN metal matrix composite using the taguchi method. Mater. Sci. Forum 773–774, 437–444 (2014)

    Google Scholar 

  9. Radika, N., Subramaniam, R., Babudeva Senapathi, S.: Machining parameter optimization of an aluminium hybrid metal matrix composite by statistical modelling. Ind. Lubr. Technol. 65(6), 425–435 (2013)

    Article  Google Scholar 

  10. Park, S.H.: Robust Design and Analysis for Quality Engineering. Chapman and Hall (1996)

    Google Scholar 

  11. Yang, W.H., Tarng, Y.S.: Design optimisation of cutting parameters for turning operations based on the taguchi method. J. Mater. Process. Technol. 84, 122–129 (1998)

    Article  Google Scholar 

  12. Lin, T.R.: Experimental design and performance analysis of TiN-coated carbide tool in face milling stainless steel. J. Mater. Process. Technol. 1–7 (2002) (in Press)

    Article  Google Scholar 

  13. Jaharah, A.G., Choudhury, I.A., Hassan, H.H.: Application of taguchi method on the optimization of end milling parameters. J. Mater. Process. Technol. 154, 84–92 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Sazali Said .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Said, M.S., Wan, N.N., Othman, N., Ab Kadir, A.R., Zubir, B. (2019). Material Removal Rate and Cutting Force of AlSi/10%AlN Metal Matrix Composite Material in Milling Process Using Uncoated Inserts. In: Ismail, A., Abu Bakar, M., Öchsner, A. (eds) Advanced Engineering for Processes and Technologies. Advanced Structured Materials, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-030-05621-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05621-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05620-9

  • Online ISBN: 978-3-030-05621-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics