Skip to main content

Parametric Study of the Two-Stage Pyrolysis Process for Activated Carbon Preparation from Pithecellobium Jiringa

  • Chapter
  • First Online:
Book cover Advanced Engineering for Processes and Technologies

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 102))

  • 568 Accesses

Abstract

Activated carbon is a type of carbon processed to have small and low volume pores that improve the surface area available for chemical reactions. Currently, the cost of activated carbon is inefficient and it is difficult to obtain activated carbon. Pithecellobium jiringa (Jering) is an organic material that is potentially used as raw material for activated carbon. However, the use of Jering waste as activated carbon is new; the previous researchers never obtained data on the correlation between the parameters. The objective of the project is to design a two-stage pyrolysis process to evaluate the effect of hydroxide (KOH) on the conductivity of activated carbon and to evaluate the effect of ambient temperature on activated carbon. There are two stages in the pyrolysis process; to remove moisture and activate the carbon with KOH. The performance of the heating rate for this space is 5 °C per minute at 30 °C per minute. The highest temperature for this heating coil is 235 °C. The amounts, and molar volumes of KOH can affect the performance of the voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farzana, R., Rajarao, R., Bhat, B.R., Sahajwalla, V., et al.: Performance of an activated carbon supercapacitor electrode synthesised from waste compact discs (CDs). J. Ind. Eng. Chem. (2018)

    Google Scholar 

  2. Zhang, E., Wang, F., Yu, Q., Scott, K., Wang, X., Diao, G., et al.: Durability and regeneration of activated carbon air-cathodes in long-term operated microbial fuel cells. J. Power Sources 360, 21–27 (2017)

    Article  Google Scholar 

  3. Plaza-Recobert, M., Trautwein, G., Pérez-Cadenas, M., Alcañiz-Monge, J., et al.: Preparation of binderless activated carbon monoliths from cocoa bean husk. Microporous Mesoporous Mater. 243, 28–38 (2017)

    Article  Google Scholar 

  4. Purnomo, C., Castello, D., Fiori, L., et al.: Granular activated carbon from grape seeds hydrothermal char. Appl. Sci. 8(3), 331 (2018)

    Article  Google Scholar 

  5. Rashidi, N.A., Yusup, S., et al.: Potential of palm kernel shell as activated carbon precursors through single stage activation technique for carbon dioxide adsorption. J. Clean. Prod. 168, 474–486 (2017)

    Article  Google Scholar 

  6. Zubrik, A., Matik, M., Hredzák, S., Lovás, M., Danková, Z., Kováčová, M., Briančin, J., et al.: Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis. J. Clean. Prod. 143, 643–653 (2017)

    Article  Google Scholar 

  7. Vilella, P.C., Lira, J.A., Azevedo, D.C.S., Bastos-Neto, M., Stefanutti, R., et al.: Preparation of biomass-based activated carbons and their evaluation for biogas upgrading purposes. Ind. Crops Prod. 109, 134–140 (2017)

    Article  Google Scholar 

  8. Li, S., Han, K., Li, J., Li, M., Lu, C., et al.: Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater. 243, 291–300 (2017)

    Article  Google Scholar 

  9. Yang, I., Kwon, D., Kim, M.S., Jung, J.C., et al.: A comparative study of activated carbon aerogel and commercial activated carbons as electrode materials for organic electric double-layer capacitors. Carbon N Y 132, 503–511 (2018)

    Article  Google Scholar 

  10. Choi, M., Park, H.C., Choi, H.S., et al.: Comprehensive evaluation of various pyrolysis reaction mechanisms for pyrolysis process simulation. Chem. Eng. Process. Process Intensif. 130, 19–35 (2018)

    Article  Google Scholar 

  11. Kabir, G., Mohd Din, A.T., Hameed, B.H., et al.: Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: a comparative study. Bioresour. Technol. 241, 563–572 (2017)

    Article  Google Scholar 

  12. Czajczyńska, D., Nannou, T., Anguilano, L., Krzyzyńska, R., Ghazal, H., Spencer, N., Jouhara, H., et al.: Potentials of pyrolysis processes in the waste management sector. Energy Procedia 123, 387–394 (2017)

    Article  Google Scholar 

  13. Gagliano, A., Nocera, F., Bruno, M., Blanco, I., et al.: Effectiveness of thermodynamic adaptative equilibrium models for modeling the pyrolysis process. Sustain Energy Technol Assess. 27, 74–82 (2018)

    Google Scholar 

  14. Kumar, A., Jena, H.M., et al.: Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column. J. Clean. Prod. 137, 1246–1259 (2016)

    Article  Google Scholar 

  15. Idrees, M., Rangari, V., Jeelani, S., et al.: Sustainable packaging waste-derived activated carbon for carbon dioxide capture. J. CO2 Util. 26, 380–387 (2018)

    Article  Google Scholar 

  16. Li, S., Han, K., Si, P., Li, J., Lu, C., et al.: High-performance activated carbons prepared by KOH activation of gulfweed for supercapacitors. Int. J. Electrochem. Sci. 13, 1728–1743 (2018)

    Article  Google Scholar 

  17. Horax, K.M., Bao, S., Wang, M., Li, Y., et al.: Analysis of graphene-like activated carbon derived from rice straw for application in supercapacitor. Chinese Chem Lett 28, 2290–2294 (2017)

    Article  Google Scholar 

  18. Li, S., Han, K., Li, J., Li, M., Lu, C., et al.: Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater. 243, 291–300 (2017)

    Article  Google Scholar 

  19. Volperts, A., Dobele, G., Zhurinsh, A., Vervikishko, D., Shkolnikov, E., Ozolinsh, J.: Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte. Xinxing Tan Cailiao/New Carbon Mater. 32(4), 319–326 (2017)

    Article  Google Scholar 

  20. Zhang, G., Chen, Y., Chen, Y., Guo, H., et al.: Activated biomass carbon made from bamboo as electrode material for supercapacitors. Mater. Res. Bull. 102, 391–398 (2018)

    Article  Google Scholar 

  21. Sridaran, A., Karim, A.A., Bhat, R., et al.: Pithecellobium jiringa legume flour for potential food applications: studies on their physico-chemical and functional properties. Food Chem. 130, 528–535 (2012)

    Article  Google Scholar 

  22. Cheng, Y.F., Bhat, R., et al.: Functional, Physicochemical and Sensory Properties of Novel Cookies Produced by Utilizing Underutilized Jering (Pithecellobium Jiringa Jack). Legume Flour. Elsevier (2016)

    Google Scholar 

  23. Bock, S.: New open-source ANSYS-SolidWorks-FLAC3D geometry conversion programs. J Sustain Min 14, 124–132 (2015)

    Article  Google Scholar 

  24. Zhang, J., Zhang, R., Ren, G., Zhang, X., et al.: A method for using solid modeling CAD software to create an implant library for the fabrication of a custom abutment. J. Prosthet. Dent. 117, 209–213 (2017)

    Article  Google Scholar 

  25. Zhang, H., Li, T., Li, Z., et al.: Modeling in SolidWorks and analysis of temperature and thermal stress during construction of intake tower. Water Sci. Eng. 2, 95–102 (2019)

    Google Scholar 

Download references

Acknowledgements

All the experiment and analysis conducted by System Engineering and Energy Laboratory, Universiti Kuala Lumpur, Malaysian Spanish Institute, Kulim Kedah, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhamad Husaini Abu Bakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abu Bakar, M.H., Mohd-Kamal, MS., Che-Adnan, MN. (2019). Parametric Study of the Two-Stage Pyrolysis Process for Activated Carbon Preparation from Pithecellobium Jiringa. In: Ismail, A., Abu Bakar, M., Öchsner, A. (eds) Advanced Engineering for Processes and Technologies. Advanced Structured Materials, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-030-05621-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05621-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05620-9

  • Online ISBN: 978-3-030-05621-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics