Skip to main content

Evaluating Mental Health Encounters in mTBI: Identifying Patient Subgroups and Recommending Personalized Treatments

  • Conference paper
  • First Online:
  • 1111 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11309))

Abstract

Mild Traumatic Brain Injuries (mTBIs) are “poorly understood” [6] and often associated with psychiatric conditions [21]. While machine learning techniques have explored these comorbidities, the utilization of psychiatric Electronic Health Records (EHRs) poses unique challenges, but provides great promise in the understanding of the brain and the effect of an mTBI [3, 14]. Therefore, in an effort to assist clinical practice in the field of mTBI, we present our work on utilizing EHR in which we apply machine learning models to identify and compare patient subgroups and explore algorithms to recommend patient catered treatment plans. Through this work, we aim to highlight effective techniques for handling the complexities of EHR and psychiatric-specific data.

F. Dabek and P. Hoover— Equal Contribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Almeida, H., Guedes, D., Meira, W., Zaki, M.J.: Is there a best quality metric for graph clusters? In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6911, pp. 44–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23780-5_13

    Chapter  Google Scholar 

  2. Bailie, J.M., et al.: Profile analysis of the neurobehavioral and psychiatric symptoms following combat-related mild traumatic brain injury: identification of subtypes. J. Head Trauma Rehabil. 31(1), 2–12 (2016)

    Article  Google Scholar 

  3. Blavin, F.E., Buntin, M.B.: Forecasting the use of electronic health records: an expert opinion approach. Medicare MedicaidRes. Rev.3(2) (2013)

    Article  Google Scholar 

  4. Chekroud, A.M., Gueorguieva, R., Krumholz, H.M., Trivedi, M.H., Krystal, J.H., McCarthy, G.: Reevaluating the efficacy and predictability of antidepressant treatments: a symptom clustering approach. JAMA Psychiatry 74(4), 370–378 (2017)

    Article  Google Scholar 

  5. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system, pp. 785–794. ACM (2016)

    Google Scholar 

  6. Cifu, D.X., Caruso, D.: Traumatic Brain Injury. Demos Medical Publishing, New York (2010)

    Google Scholar 

  7. Conder, R.L., Conder, A.A.: Sports-related concussions. North Carolina Med. J. 76(2), 89–95 (2015)

    Article  Google Scholar 

  8. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  9. Hug, N.: Surprise, a Python library for recommender systems (2017). http://surpriselib.com

  10. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  11. Kodinariya, T.M., Makwana, P.R.: Review on determining number of cluster in k-means clustering. Int. J. 1(6), 90–95 (2013)

    Google Scholar 

  12. Lletı, R., Ortiz, M.C., Sarabia, L.A., Sánchez, M.S.: Selecting variables for k-means cluster analysis by using a genetic algorithm that optimises the silhouettes. Anal. Chim. Acta 515(1), 87–100 (2004)

    Article  Google Scholar 

  13. Meystre, S.M., Savova, G.K., Kipper-Schuler, K.C., Hurdle, J.F., et al.: Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform 35(128), 44 (2008)

    Google Scholar 

  14. Miotto, R., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016)

    Article  Google Scholar 

  15. Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization, pp. 195–204. ACM (2000)

    Google Scholar 

  16. Newcomer, S.R., Steiner, J.F., Bayliss, E.A.: Identifying subgroups of complex patients with cluster analysis. Am. J. Managed Care 17(8), e324-32 (2011)

    Google Scholar 

  17. Ngoc, P.T., Yoo, M.: The lexicon-based sentiment analysis for fan page ranking in facebook. In: 2014 International Conference on Information Networking (ICOIN), pp. 444–448. IEEE (2014)

    Google Scholar 

  18. Nielsen, F.Å.: Afinn, March 2011. http://www2.imm.dtu.dk/pubdb/p.php?6010

  19. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_10

    Chapter  Google Scholar 

  20. Pelleg, D., Moore, A.W., et al.: X-means: extending k-means with efficient estimation of the number of clusters. ICML 1, 727–734 (2000)

    Google Scholar 

  21. Schwarzbold, M., et al.: Psychiatric disorders and traumatic brain injury. Neuropsychiatric Dis. Treat. 4(4), 797 (2008)

    Google Scholar 

  22. Silge, J., Robinson, D.: Text Mining with R: A Tidy Approach. O’Reilly Media Inc., Sebastopol (2017)

    Google Scholar 

  23. Thorndike, R.L.: Who belongs in the family? Psychometrika 18(4), 267–276 (1953)

    Article  Google Scholar 

  24. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 63(2), 411–423 (2001)

    Article  MathSciNet  Google Scholar 

  25. Weiskopf, N.G., Hripcsak, G., Swaminathan, S., Weng, C.: Defining and measuring completeness of electronic health records for secondary use. J. Biomed. Inf. 46(5), 830–836 (2013)

    Article  Google Scholar 

  26. Wilk, J.E., Herrell, R.K., Wynn, G.H., Riviere, L.A., Hoge, C.W.: Mild traumatic brain injury (concussion), posttraumatic stress disorder, and depression in us soldiers involved in combat deployments: association with postdeployment symptoms. Psychosom. Med. 74(3), 249–257 (2012)

    Article  Google Scholar 

  27. Wu, J., Roy, J., Stewart, W.F.: Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Med. Care 48(6), S106–S113 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Filip Dabek , Peter Hoover or Jesus Caban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dabek, F., Hoover, P., Caban, J. (2018). Evaluating Mental Health Encounters in mTBI: Identifying Patient Subgroups and Recommending Personalized Treatments. In: Wang, S., et al. Brain Informatics. BI 2018. Lecture Notes in Computer Science(), vol 11309. Springer, Cham. https://doi.org/10.1007/978-3-030-05587-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05587-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05586-8

  • Online ISBN: 978-3-030-05587-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics