Skip to main content

Diagnostic Modeling of Skill Hierarchies and Cognitive Processes with MLTM-D

  • Chapter
  • First Online:
Handbook of Diagnostic Classification Models

Part of the book series: Methodology of Educational Measurement and Assessment ((MEMA))

  • 1506 Accesses

Abstract

This chapter formally describes the multicomponent latent trait model for diagnosis (MLTM-D; Embretson S.E., Yang X, Psychometrika 78:14–36, 2013) and then provides examples of applications to diagnose broad and narrow skills, as well as measure processing complexity and attainment. MLTM-D can be applied to diagnose either skill mastery or cognitive processing capabilities of examinees. MLTM-D is readily applicable to diagnose hierarchically-structured skills or to assess cognitive processes with postulated sources of complexity. That is, MLTM-D is a multidimensional conjunctive model for item responses that are impacted by varying underlying components with specifiable sources of complexity. MLTM-D can be applied to assess both processing competencies of examinees and the impact of the postulated features on process difficulty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443–459.

    Google Scholar 

  • Daniel, R. C., & Embretson, S. E. (2010). Designing cognitive complexity in mathematical problem solving items. Applied Psychological Measurement, XX, 348–364.

    Article  Google Scholar 

  • du Toit, M. (2003). IRT from SSI. Lincolnwood, IL: Scientific Software International, Inc.

    Google Scholar 

  • Embretson, S. E. (1997). Multicomponent latent trait models. In W. van der Linden & R. Hambleton (Eds.), Handbook of modern item response theory (pp. 305–322). New York, NY: Springer.

    Chapter  Google Scholar 

  • Embretson, S. E. (2015). The multicomponent latent trait model for diagnosis: Applications to heterogeneous test domains. Invited paper for Applied Psychological Measurement, XX, 6–30.

    Google Scholar 

  • Embretson, S. E., & Daniel, R. C. (2008). Understanding and quantifying cognitive complexity level in mathematical problem solving items. Psychology Science, 50, 328–344.

    Google Scholar 

  • Embretson, S. E., Morrison, K., & Jun, H. W. (2015). Reliability of diagnosing broad and narrow skills with the multicomponent latent trait model: A study of middle school mathematics. In L. Andries van der Ark, D. M. Bolt, W.-C. Wang, J. M. Douglas, & S.-M. Chow (Eds.), Quantitative psychology research. New York, NY: Springer.

    Google Scholar 

  • Embretson, S. E., & Yang, X. (2013). A multicomponent latent trait model for diagnosis. Psychometrika, 78, 14–36.

    Article  Google Scholar 

  • Hensen, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 1919–1210.

    Google Scholar 

  • Lewis, C., & Sheehan, K. (1990). Using Bayesian decision theory to design a computerized mastery test. Applied Psychological Measurement, 14, 367–386.

    Article  Google Scholar 

  • Mayer, R. (2003). Mathematical problem solving. In J. M. Royer (Ed.), Mathematical cognition: A volume in current perspectives on cognition, learning, and instruction (pp. 69–92). Cambridge, MA: Information Age Publishing, Inc.

    Google Scholar 

  • Morrison, K., & Embretson, S. E. (2014). Using cognitive complexity to measure psychometric properties of mathematics assessment items. Multivariate Behavior Research, 49, 1–2.

    Article  Google Scholar 

  • National Assessment Governing Board (NAGB). 2017. Mathematics framework for the 2015 National Assessment of Educational Progress. U.S. Department of Education.

    Google Scholar 

  • Rudner, L. M. (2005). Expected classification accuracy. Practical Assessment Research & Evaluation, 10, 1–4.

    Google Scholar 

  • von Davier, M. (2005). A general diagnostic model applied to language testing data (Research Report RR-05-16). Princeton, NJ: ETS.

    Google Scholar 

  • von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61, 287–307.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan E. Embretson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Embretson, S.E. (2019). Diagnostic Modeling of Skill Hierarchies and Cognitive Processes with MLTM-D. In: von Davier, M., Lee, YS. (eds) Handbook of Diagnostic Classification Models. Methodology of Educational Measurement and Assessment. Springer, Cham. https://doi.org/10.1007/978-3-030-05584-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05584-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05583-7

  • Online ISBN: 978-3-030-05584-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics