Skip to main content

The General Diagnostic Model

  • Chapter
  • First Online:
Handbook of Diagnostic Classification Models

Part of the book series: Methodology of Educational Measurement and Assessment ((MEMA))

Abstract

The general diagnostic model (GDM) allows modeling dichotomous and polytomous item responses under the assumption that respondents differ with respect to multiple latent skills or attributes, and that these may be distributed differently across populations. Item responses can be of mixed format, dichotomous and/or polytomous, and skills/attributes can be binary, polytomous ordinal, or continuous. Variables that define populations can be observed, latent as in discrete mixture models, or partially missing. Unobserved grouping variables can be predicted based on hierarchical extensions of the GDM. It was shown that through reparameterization, the GDM contains the DINA as well as the logistic G-DINA, which is the same as the log-linear cognitive diagnostic model (LCDM), as special cases, and hence can fit all models that can be specified in these frameworks. Taken together, the GDM includes a wide range of diagnostic models, as well as item response theory (IRT), multidimensional IRT (MIRT), latent class models, located latent class models, multiple group and mixture versions of these models, as well as multilevel, and longitudinal extensions of these. This chapter introduces the GDM by means of a formal description of basic model assumptions and their generalizations and describes how models can be estimated in the GDM framework using the mdltm software. The software is free for research purposes, can handle very large databases up to millions of respondents and thousands of items, and provides efficient estimation of models through utilization of massively parallel estimation algorithms. The software was used operationally for scaling the PISA 2015, 2018, and PIAAC 2012 main study databases, which include hundreds of populations, grouping variables, and weights, and hundreds of test forms collected over five assessment cycles with a combined size of over two million respondents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, R. (2010). Case (Person) Fit and Residuals. Notes on ConQuest 3.0 software features. https://www.acer.org/files/Conquest-Notes-3-CaseFitAndResiduals.pdf

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.

    Article  Google Scholar 

  • Berkson, J. (1938). Some difficulties of interpretation encountered in the application of the chisquare test. Journal of the American Statistical Association, 33, 526–542.

    Article  Google Scholar 

  • Bock, R. D., & Zimowski, M. F. (1997). Multiple group IRT. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 433–448). New York: Springer.

    Chapter  Google Scholar 

  • Box, G. E. P. (1976). Science and statistics. Journal of the American Statistical Association, 71, 791–799. https://doi.org/10.1080/01621459.1976.10480949

    Article  Google Scholar 

  • Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models in social and behavioral research: Applications and data analysis methods (1st ed.). Newbury Park, CA: Sage Publications.

    Google Scholar 

  • de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199.

    Article  Google Scholar 

  • de la Torre, J., & Minchen, N. D. (this volume). The G-DINA model framework. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.

    Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1–38.

    Google Scholar 

  • Gibbons, R. D., & Hedeker, D. R. (1992, September). Full-information item bi-factor analysis. Psychometrika, 57(3), 423–436. https://doi.org/10.1007/BF02295430

    Article  Google Scholar 

  • Gilula, Z., & Haberman, S. J. (1994). Models for analyzing categorical panel data. Journal of the American Statistical Association, 89, 645–656.

    Article  Google Scholar 

  • Haberman, S. J. (2009). Use of generalized residuals to examine goodness of fit of item response models. ETS RR-09-15.

    Google Scholar 

  • Haberman, S. J., von Davier, M., & Lee, Y. (2008). Comparison of multidimensional item response models: Multivariate normal ability distributions versus multivariate polytomous ability distributions. RR-08-45. ETS Research Report.

    Google Scholar 

  • Heinen, T. (1996). Latent class and discrete latent trait models, similarities and differences. Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  • Henson, R., & Templin, J. L. (this volume). Loglinear cognitive diagnostic model (LCDM). In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.

    Google Scholar 

  • Henson, R., Templin, J., & Willse, J. (2009). Defining a family of cognitive diagnosis models using log linear models with latent variables. Psychometrika, 74, 191–210.

    Article  Google Scholar 

  • Holland, P. W. (1990). The Dutch identity: A new tool for the study of item response models. Psychometrika, 55(1), 5–18.

    Article  Google Scholar 

  • Junker, B. W., & Sijtsma, K. (2001). Nonparametric item response theory in action: An overview of the special issue. Applied Psychological Measurement, 25(3), 211–220. https://doi.org/10.1177/01466210122032028

    Article  Google Scholar 

  • Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R., Waldorp, L. J., … Maris, G. (2018). An introduction to network psychometrics: Relating Ising network models to item response theory models. Multivariate Behavioral Research, 53(1), 15–35. https://doi.org/10.1080/00273171.2017.1379379

    Article  Google Scholar 

  • Mislevy, R. J., & Verhelst, N. D. (1990). Modeling item responses when different subjects employ different solution strategies. Psychometrika, 55, 195–215.

    Article  Google Scholar 

  • Molenaar, I. W. (1983). Some improved diagnostics for failure of the Rasch model. Psychometrika, 48, 49–72.

    Article  Google Scholar 

  • Rijmen, F., & Jeon, M. (2013). Fitting an item response theory model with random item effects across groups by a variational approximation method. Annals of Operations Research, 206, 647–662.

    Article  Google Scholar 

  • Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271–282.

    Article  Google Scholar 

  • Rost, J., & von Davier, M. (1994). A conditional item fit index for Rasch models. Applied Psychological Measurement, 18, 171–182.

    Article  Google Scholar 

  • Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications. New York: The Guilford Press.

    Google Scholar 

  • Savage, L. J. (1972). The foundation of statistics. Dover publications.

    Google Scholar 

  • Schwarz, G. E. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464. https://doi.org/10.1214/aos/1176344136

    Article  Google Scholar 

  • Sinharay, S. (2003). Practical applications of posterior predictive model checking for assessing fit of the common item response theory models (Research Report RR03–33). Retrieved from Educational Testing Service website: http://www.ets.org/Media/Research/pdf/RR-03-33-Sinharay.pdf

  • Tsao, R. (1967). A second order exponential model for multidimensional dichotomous contingency tables with applications in medical diagnosis. Unpublished doctoral thesis, Harvard University, Department of Statistics.

    Google Scholar 

  • Vermunt, J. K. (2003). Multilevel latent class models. Sociological Methodology, 33, 213–239.

    Article  Google Scholar 

  • Vermunt, J. K. (2004). An EM-algorithm for the estimation of parametric and nonparametric hierarchical nonlinear models. Statistica Neerlandica, 58(2), 220–233.

    Article  Google Scholar 

  • Vermunt, J. K. (2010). Latent class models. In P. Peterson, E. Baker, & B. McGaw (Eds.), International encyclopedia of education (Vol. 7, pp. 238–244). Oxford, UK: Elsevier.

    Chapter  Google Scholar 

  • von Davier, M. (1996). Mixtures of polytomous Rasch models and latent class models for ordinal variables. In F. Faulbaum & W. Bandilla (Eds.), Softstat 95 – advances in statistical software 5. Stuttgart, Germany: Lucius & Lucius.

    Google Scholar 

  • von Davier, M. (1997). Bootstrapping goodness-of-fit statistics for sparse categorical data: Results of a Monte Carlo study. Methods of Psychological Research, 2, 29–48. Retrieved January 14, 2010, from: http://www.dgps.de/fachgruppen/methoden/mpr-online/issue3/art5/davier.pdf.

    Google Scholar 

  • von Davier, M. (2005). A general diagnostic model applied to language testing data. ETS Research Report Series, 2005, 1–35. https://doi.org/10.1002/j.2333-8504.2005.tb01993.x

    Article  Google Scholar 

  • von Davier, M. (2008a). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61, 287–307. https://doi.org/10.1348/000711007X193957

    Article  Google Scholar 

  • von Davier, M. (2008b). The mixture general diagnostic model. In G. R. Hancock & K. M. Samuelson (Eds.), Advances in latent variable mixture models (pp. 255–276). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • von Davier, M. (2009a). Mixture distribution item response theory, latent class analysis, and diagnostic mixture models. In S. Embretson (Ed.), Measuring psychological constructs: Advances in model-based approaches (pp. 11–34). Washington, DC: APA Press.

    Google Scholar 

  • von Davier, M. (2009b). Some notes on the reinvention of latent structure models as diagnostic classification models. Measurement – Interdisciplinary Research and Perspectives, 7(1, March), 67–74.

    Article  Google Scholar 

  • von Davier, M. (2010). Hierarchical mixtures of diagnostic models. Psychological Test and Assessment Modeling, 52, 8–28. Retrieved April 26, 2012, from: http://www.psychologie-aktuell.com/fileadmin/download/ptam/1-2010/02_vonDavier.pdf

    Google Scholar 

  • von Davier, M. (2011). Equivalency of the DINA model and a constrained general diagnostic model. ETS-RR-11-37. Princeton: ETS Research Report Series.

    Google Scholar 

  • von Davier, M. (2013). The DINA model as a constrained general diagnostic model—two variants of a model equivalency. British Journal of Mathematical and Statistical Psychology, 67, 49–71.

    Article  Google Scholar 

  • von Davier, M. (2014). The log-linear cognitive diagnostic model (LCDM) as a special case of the general diagnostic model (GDM) (Research Report No. RR-14-40). Princeton, NJ: Educational Testing Service. https://doi.org/10.1002/ets2.12043

  • von Davier, M. (2016). High-performance psychometrics: The parallel-E parallel-M algorithm for generalized latent variable models. (ETS Research Report ETS-RR-16-34).

    Google Scholar 

  • von Davier M. (2017) New results on an improved parallel EM algorithm for estimating generalized latent variable models. In van der Ark L., Wiberg M., Culpepper S., Douglas J., Wang WC. (eds) Quantitative psychology. IMPS 2016. Springer Proceedings in Mathematics & Statistics (Vol 196). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-56294-0_1

  • von Davier, M. (2018). Diagnosing diagnostic models: From von Neumann’s elephant to model equivalencies and network psychometrics. Measurement: Interdisciplinary Research and Perspectives, 16(1), 59–70. https://doi.org/10.1080/15366367.2018.1436827

    Article  Google Scholar 

  • von Davier, M., & Lee, Y.-S. (this volume). Introduction: From latent class analysis to DINA and beyond. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.

    Google Scholar 

  • von Davier, M., & von Davier, A. A. (2007). A unified approach to IRT scale linkage and scale transformations. Methodology, 3, 115–124.

    Article  Google Scholar 

  • von Davier, M., & von Davier, A. A. (2011). A general model for IRT scale linking and scale transformations. In A. A. von Davier (Ed.), Statistical models for test equating, scaling and linking. New York: Springer.

    Chapter  Google Scholar 

  • von Davier, M., & Carstensen, C. H. (Eds.). (2007). Multivariate and mixture distribution Rasch models. New York, NY: Springer.

    Google Scholar 

  • von Davier, M., & Molenaar, I. W. (2003). A person-fit index for Polytomous Rasch models, latent class models, and their mixture generalizations. Psychometrika, 68, 213–228.

    Article  Google Scholar 

  • von Davier, M., & Rost, J. (2006). Mixture distribution item response models. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics, Vol. 26: Psychometrics (pp. 643–768). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • von Davier, M., & Rost, J. (2016). Logistic mixture-distribution response models. In W. van der Linden (Ed.), Handbook of item response theory (Vol. 1, 2nd ed., pp. 393–406). Boca Raton, FL: CRC Press.

    Google Scholar 

  • von Davier, M., DiBello, L., & Yamamoto, K. (2008). Reporting test outcomes using models for cognitive diagnosis. In J. Hartig, E. Klieme, & D. Leutner (Eds.), Assessment of competencies in educational contexts (pp. 151–176). Toronto, Canada: Hogrefe & Huber Publishers.

    Google Scholar 

  • von Davier, M., Xu, X., & Carstensen, C. H. (2011). Measuring growth in a longitudinal large scale assessment with a general latent variable model. Psychometrika, 76, 318–336.

    Article  Google Scholar 

  • von Davier, M., & Yamamoto, K. (2004a, October). A class of models for cognitive diagnosis. Paper presented at the 4th Spearman Conference, Philadelphia, PA.

    Google Scholar 

  • von Davier, M., & Yamamoto, K. (2004b). Partially observed mixtures of IRT models: An extension of the generalized partial credit model. Applied Psychological Measurement, 28(6), 389–406.

    Article  Google Scholar 

  • Xu, X., & von Davier, M. (2006). Cognitive diagnosis for NAEP proficiency data (Research Report, RR-06-08). Princeton, NJ: ETS.

    Book  Google Scholar 

  • Xu, X., & von Davier, M. (2008). Linking with the general diagnostic model. (Research Report RR-08-08). Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • Yamamoto, K. (1989). A hybrid model of IRT and latent class models.. Research Report RR-89-41. Princeton, NJ: Educational Testing Service.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias von Davier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

von Davier, M. (2019). The General Diagnostic Model. In: von Davier, M., Lee, YS. (eds) Handbook of Diagnostic Classification Models. Methodology of Educational Measurement and Assessment. Springer, Cham. https://doi.org/10.1007/978-3-030-05584-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05584-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05583-7

  • Online ISBN: 978-3-030-05584-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics